

Developed by Touch Technologies, Inc. August 12, 2021

Sheerpower Enhancements
Version 10 Build 31 through Build 99

Supplement to A Guide to the Sheerpower Language

http://www.ttinet.com/doc/sp4gl/sheerpower_contents.html

 2

Table of Contents

Sheerpower Functions ..9

_ELAPSED System Function ... 9

Example: _ELAPSED System Function ... 9

_ROUTINE System Function .. 9

Example: _ROUTINE System Function .. 9

ASCII() Function – Return ASCII Value of Specified String Character .. 10

Example: ASCII() Function – Return ASCII Value of Specified String Character 10

BETWEEN$() Function ... 10

Example: BETWEEN$() to Extract Substring Data ... 10

Example: BETWEEN$() with Optional OCCURRENCE Parameter .. 10

EPS Function .. 11

Example: EPS Function .. 11

FINDITEM() Function ... 11

Example: FINDITEM() with OCCURRENCE Parameter ... 12

Example: FINDITEM() with FORMAT Parameter ... 12

JOIN() Function ... 13

Example: JOIN() Function .. 13

MAXSIZE() Function for Arrays .. 13

Example: MAXSIZE() Function for Arrays .. 13

PHASH$() Function .. 14

Example: PHASH$() Function .. 14

Example: PHASH$() Function with Salt ... 14

POS() Function – Search from End of String ... 14

Example: POS() Function – Search from End of String .. 15

SELECT | END SELECT Statement with CASE OF BOOLEAN ... 15

Example: SELECT | END SELECT Statement with CASE OF BOOLEAN_EXPR 15

SORTED() Function with Arrays ... 16

Example: SORTED() with Arrays .. 16

Example: SORTED() with Arrays .. 17

Example: SORTED() with Arrays (Case Regardless/Case Sensitive) .. 18

 3

UUID$ Function ... 18

Example: UUID$ with Optional Format Parameter .. 19

Example: UUID$ with Optional Length Parameter ... 20

Example: UUID$ with Identification Prefix ... 20

Example: UUID$ with Identification Date Prefix ... 20

XOR$() Function .. 20

Example: XOR$() Function .. 20

Sheerpower Statements .. 21

ABORT Command .. 21

Example: ABORT Command .. 21

ASK SYSTEM: SPVERSION Statement .. 22

Example: ASK SYSTEM: SPVERSION .. 22

ASSERT Statement... 22

Example: ASSERT Command ... 22

DIM | REDIM Statements – Dynamically Expandable Arrays ... 23

Example: Dynamically Expandable Arrays – Appending Data .. 23

Example: Dynamically Expandable Arrays – Specifying Data Storage Position 23

FOR | NEXT Loop Statement – Virtually Infinite Counter ... 23

Example: FOR / NEXT Loop – Virtually Infinite Counter .. 24

IF THEN Statement – THEN Optional .. 24

Example: IF THEN Statement – THEN Optional... 24

OPEN FILE | OPEN TABLE Statement with ACCESS UPDATE Option ... 25

Example: ACCESS UPDATE Option with OPEN FILE | OPEN TABLE Statement 25

OPEN FILE Statement with SHARED Option .. 25

Example: OPEN FILE Statement with SHARED Option .. 26

OPEN FILE Statement with HEADERS Option .. 26

Example: OPEN FILE with HEADERS .. 26

OPEN FILE Statement with VERB Option .. 27

Example: OPEN FILE Statement with VERB Option ... 27

Example: Specify Custom Header with VERB & DATA Options .. 27

START TIMER Statement ... 27

 4

Example: START TIMER with _ELAPSED .. 28

Sheerpower Directives % ... 29

%INCLUDE Directive for Web Scripting ... 29

Example: %INCLUDE Directive for Web Scripting ... 29

Example: %INCLUDE Directive with CONDITIONAL Option .. 29

Example: %INCLUDE Directive with ONCE Option .. 30

%TEST and %TEST_IGNORE Directives with OPTION TEST ON | OFF ... 30

Example: %TEST and %TEST_IGNORE Directives with OPTION TEST ON | OFF 30

ARS Statements .. 31

ASK TABLE: COUNT Statement .. 31

Example: ASK TABLE: COUNT ROWS ... 31

ASK | SET TABLE: DATA Statement ... 31

Example: ASK | SET TABLE: DATA ... 32

ASK | SET DATA Statement ... 33

Example: ASK | SET Statement with DATA:// ... 33

ASK TABLE: ENGINE Statement ... 34

Example: ASK TABLE: ENGINE ... 34

OPEN TABLE with CACHESIZE Option – Increase .. 34

Example: OPEN TABLE with CACHESIZE Option – Increase... 34

SORT BY in EXTRACT | END EXTRACT with LENGTH Option ... 34

Example: SORT BY in EXTRACT | END EXTRACT with Length Option .. 35

Example: Sorting Conditionally using SORT BY with Length Option ... 35

Debugging Commands and Features .. 36

DEBUG SHOW Command .. 36

Example: DEBUG SHOW .. 36

DEBUG STACK Command .. 36

Example: DEBUG STACK Command .. 36

DUMP Statement .. 37

Example: DUMP Statement .. 37

DUMP OF TABLES Debug Output .. 37

Example: DUMP OF TABLES Debug Output .. 38

 5

LIST STATS Command – Output File .. 39

Example: LIST STATS – Output File .. 39

SET | CANCEL WATCH Statements .. 40

Example: SET | CANCEL WATCH ... 40

Debugging Running Programs – External Debug Commands ... 42

$DEBUG ON | $DEBUG OFF .. 42

Example: $DEBUG ON | $DEBUG OFF .. 43

$SHOW ALL ... 45

New Features for Writing Improved Code .. 47

Numeric Constants Support Underscores “_” .. 47

Variable Name Spelling Suggestions ... 47

Example: Variable Name Spelling Suggestions in SPDEV .. 47

Comments in Sheerpower Programs .. 48

Example: Comments in Sheerpower Programs .. 48

Support for Both “!=” and “<>” for “NOT EQUAL TO” .. 48

Example: Support for Both “!=” and “<>” for “NOT EQUAL TO” .. 48

SCOPED ROUTINE with STATIC Variables .. 49

Example: Scoped Routine ... 49

LOCAL ROUTINE .. 49

Case Use Example for LOCAL ROUTINE ... 49

GROUP & META GROUP Variables .. 51

Example: Create GROUPs and META GROUP ... 51

PRINT GROUP STATEMENT ... 51

Example: PRINT GROUP Statements ... 52

RESET GROUP Statement .. 52

Example: RESET GROUP Statement .. 53

MODULE | END MODULE Statements .. 54

Example: %INCLUDE MODULE .. 54

Example: Access Routine or Variable in a Module.. 54

Example: Access Routine or Variable in a Module.. 54

LOGICALS, SYMBOLS & GLOBALS: Interprocess Communication Methods .. 55

 6

Example: SET | ASK SYSTEM with LOGICAL .. 55

Example: SET | ASK SYSTEM with SYMBOL ... 56

CLUSTERS in Sheerpower .. 57

Creating Sheerpower Clusters .. 57

Creating Multiple Related Clusters ... 57

Example: Creating Multiple Related Clusters ... 58

ADD CLUSTER Statement .. 58

Example: Use SET CLUSTER to Add Data in Explicit Row Number .. 58

Example: ADD CLUSTER Statement... 59

Example: ADD CLUSTER Statement with Constant Data SHORTCUT .. 60

SET CLUSTER Statement .. 61

Example: SET CLUSTER Statement .. 61

ASK CLUSTER Statement ... 62

Example: ASK CLUSTER Statement.. 62

SIZE() Function .. 62

Example: SIZE() Function ... 62

COLLECT CLUSTER | END COLLECT Statements .. 63

Example: COLLECT CLUSTER | END COLLECT Statements .. 63

Example: FOR | NEXT Statement to Iterate Through a Collection ... 64

UNIQUE Option with COLLECT | END COLLECT Statements ... 65

Example: COLLECT | END COLLECT with UNIQUE Option ... 65

INCLUDE, EXCLUDE and SORT BY with COLLECT | END COLLECT Statements .. 66

Example: INCLUDE, EXCLUDE, and SORT BY Statements .. 66

CLUSTER INPUT Statement ... 67

Example: CLUSTER INPUT with TAB .. 68

Example: CLUSTER INPUT with FIELD Option for Custom Delimiter ... 68

Example: CLUSTER INPUT with RECORD and FIELD Options for Delimiters 68

Example: CLUSTER INPUT with DATA Option (Input Specific Rows) ... 68

Example: CLUSTER INPUT with Open Channel .. 68

Example: CLUSTER INPUT with INCLUDE and EXCLUDE ... 69

PRINT CLUSTER Statement .. 69

 7

Example: PRINT CLUSTER – Default .. 70

Example: PRINT CLUSTER: ALL with Default Header ... 70

Example: PRINT CLUSTER: ALL with Custom Headers ... 71

Example: PRINT CLUSTER: Headers Suppressed ... 71

Example: PRINT CLUSTER: LIST ... 72

Example: PRINT CLUSTER: ROW .. 72

Example: PRINT CLUSTER to an Open Channel ... 73

Example: PRINT CLUSTER with INCLUDE Option .. 73

Example: PRINT CLUSTER with EXCLUDE Option .. 73

Example: PRINT CLUSTER with RECORD and FIELD Options ... 74

FINDROW() Function ... 74

Example: FINDROW() Function ... 75

Example: FINDROW() with _COLLECTED ... 76

FINDROW() with Synthetic Keys ... 76

Example: FINDROW() Lookups with Synthetic Keys ... 77

JSON$() Function ... 78

Example: JSON$() Function ... 78

COPY CLUSTER Statement ... 80

Example: COPY CLUSTER Statement ... 80

Example: COPY CLUSTER Statement with ALL Option .. 81

Example: COPY CLUSTER Statement with APPEND Option .. 82

RESET CLUSTER Statement .. 83

Example: RESET CLUSTER Statement – Current Row .. 83

Example: RESET CLUSTER Statement with ALL Option ... 83

Scalar Clusters ... 84

Example: Create a Scalar Cluster with Data .. 84

ENUM Statement .. 84

Example: ENUM Statement .. 84

Embedded Cluster Templates ... 85

Example: Embedded Cluster Templates ... 85

Example: Embedded Cluster Template JSON Objects Using PREFIX .. 85

 8

Example: Store Data in JSON Object Cluster Variable .. 86

Clusters with Adhoc JSON Objects .. 86

Example: Clusters with Adhoc JSON Objects .. 86

Passing Clusters into Routines .. 87

Example: Passing Clusters into Routines .. 87

Private Clusters ... 88

Example: Private Clusters.. 88

New Sheerpower Synonyms .. 89

Full List of Synonyms in Sheerpower .. 89

ARS Utilities .. 90

ARSCHK -COUNT Option ... 90

Example: ARSCHK -COUNT Option .. 90

ARSRESTORE & ARS2ARS Enhancement ... 91

INDEX ... 92

 9

Sheerpower Functions

_ELAPSED System Function

Format:

_ELAPSED

When a program starts, its elapsed time running is set to zero. The _ELAPSED system function returns

what the current elapsed time is in seconds.

_ELAPSED is used with the START TIMER statement to help find bottlenecks in code by timing specific

sections of code.

Because Sheerpower is so fast, often the code to be timed must be put inside of a loop to produce non-

zero elapsed times. In this example, we iterate over the code 10,000,000 times.

Example: _ELAPSED System Function

 start timer

 for i = 1 to 10_000_000 // underscores can be used to make larger numbers easier to read

 next i

 print 'Elapsed time in the code above: '; _elapsed

 end

Elapsed time in the code above: .1

_ROUTINE System Function

Format:

_ROUTINE

The system function _ROUTINE returns the name of the current routine as a string. This function is

useful when writing to a log file where you want to include the name of the current routine.

Example: _ROUTINE System Function

 the_id$ = ‘B98726’

 do_it

 end

 routine do_it

 print 'Missing student ID: '; the_id$;', routine '; _routine

 end routine

Missing student ID: B98726, routine DO_IT

 10

ASCII() Function – Return ASCII Value of Specified String Character

Format:

ASCII(str_expr$[, int_expr])

The ASCII() function has been enhanced with the option to return the ASCII decimal value of the nth

character of a string (int_expr) versus only the string’s first character. This enhancement on the ASCII()

function is useful for performing mathematical operations on characters in a string or to convert

individual string characters into byte values.

Example: ASCII() Function – Return ASCII Value of Specified String Character

 line$ = 'To be or not to be: that is the question.'

 character_number = 12

 ascii_char_value = ascii(line$, character_number)

 print ascii_char_value

 end

116

BETWEEN$() Function

Format:

BETWEEN$(str_expr, str_delim, str_delim[, int_expr])

The BETWEEN$() function provides a quick method to parse strings and extract data from them. Define

the start and end delimiters, and BETWEEN$() will return the data between the two delimiters.

Use the optional occurrence parameter (int_expr) to define which instance of the start and end

delimiting values to locate before returning the value in between.

Example: BETWEEN$() to Extract Substring Data

 url_string$ = 'https://www.amazon.com/Looking-Upside-Down-Nothing-Blahblahananda'

 domain_substring$ = between$(url_string$, '//', '/')

 print domain_substring$

 end

www.amazon.com

Example: BETWEEN$() with Optional OCCURRENCE Parameter

 html$ = '<input type="text" value="Sally"> <input type="text" value="Johnny">'

 value_substring$ = between$(html$, 'value="', '"',2)

 print value_substring$

 end

Johnny

 11

 EPS Function

Format:

EPS

EPS is defined in mathematics as epsilon, the “close-enough” factor. It is generally used when writing

formulas that converge on a final value. If the final value is within “epsilon” of the previously calculated

value, the formula has converged onto the final value.

The EPS function always returns the smallest fractional value of 0.0000000000000001.

 print EPS

0.0000000000000001

Example: EPS Function

 n = 5499025

 x = n

 y = 1 // initial guess

 do while x - y > eps

 x = (x + y) / 2

 y = n / x

 loop

 print 'Square root of'; n; 'is about:'; x

 end

Square root of 5499025 is about: 2345

 FINDITEM() Function

Format:

FINDITEM(array_name, expr [, int_expr1, int_expr2])

The FINDITEM() function is used to rapidly search an array for a given data value.

Given an array name and a string expression containing the data value to find, FINDITEM() will return

either an index into the array or a ‘0’ if the string is not found.

FINDITEM() can be called with the optional occurrence (int_expr1) and/or format option (int_expr2)

parameters. Use the optional occurrence parameter to define which instance of the string expression

found to return as an index. “1” is the default occurrence.

 12

Example: FINDITEM() with OCCURRENCE Parameter

 dim a$(0)

 a$(0) = 'Fred'

 a$(0) = 'Apple'

 a$(0) = 'tom'

 a$(0) = 'sue'

 a$(0) = 'TOM'

 print finditem(a$, 'tom', 1) // find the first occurrence of “tom” – the default if no occurrence parameter set

 print finditem(a$, 'tom', 2) // find the second occurrence of "tom" (5)

 print finditem(a$, 'tom', 3) // find the 3rd -- this will fail and return “0”

 end

3

5

0

Use one of the format options to perform case-sensitive or case-regardless searches on strings for exact

or partial matches. Format option values are:

Format Value Description

0 The default format if no parameter is given, performs a case-regardless search for
an exact match.

1 Performs a case-sensitive search for an exact match.

2 Performs a case-regardless search for a partial match on the first characters of the
string being searched.

3 Performs a case-sensitive search for a partial match on the first characters of the
string being searched.

Note: in the case of a tie, there is no guaranteed order returned of the tied values.

Example: FINDITEM() with FORMAT Parameter

 dim a$(0)

 a$(0) = 'Fred'

 a$(0) = 'Apple'

 a$(0) = 'tom'

 a$(0) = 'sue'

 a$(0) = 'TOM'

 print finditem(a$,'TOM',1,0) // format 0 case-regardless search

 print finditem(a$,'TOM',1,1) // format 1 case-sensitive search

 print finditem(a$,'T',1,2) // format 2 case-regardless partial search

 print finditem(a$,'T',1,3) // format 3 case-sensitive partial search

 end

 13

// results

3

5

3

5

JOIN() Function

Format:

JOIN(str_var, str_expr1[, str_expr2][, str_exp3] … [, str_expr16])

The JOIN() function allows you to join up to 16 string expressions at a time. JOIN() is over 10,000 faster

than using the “+” operator for performing large numbers of joins on string expressions. The typical use

of JOIN() is to join thousands of strings in a loop, two strings at a time.

The value of the first (root) string expression is updated to contain the new joined string expression.

The result of JOIN() is the length of the final string.

Example: JOIN() Function

 a$ = 'Sally'

 b$ = ' and Fred'

 new_length = join(a$, b$, ' and more.')

 print a$

 print 'New string length: '; new_length

 end

Sally and Fred and more.

New string length: 24

MAXSIZE() Function for Arrays

Format:

MAXSIZE(array_name)

The MAXSIZE() function returns the maximum number of elements in an array.

Example: MAXSIZE() Function for Arrays

 dim client_name(5, 6)

 print maxsize(client_name)

 end

30

 14

PHASH$() Function

Format:

PHASH$(str_expr[, int_expr])

The string expression is the text to be hashed, and the optional integer for the second parameter can

be used to further randomize the hashing, resulting in a "salted hashed password."

The PHASH$() function returns a 24-byte string that is URL-SAFE. It can be used in a URL without having

to URLENCODE$() it first. The 24-character hash is extremely unique given any text string to hash.

The PHASH$ function can process over 5GB of text per second, making it suitable for very large datasets.

PHASH$() uses a different hashing method than HASH$() and is recommended over the use of the

HASH$() function because it produces a more random hash and is faster.

Example: PHASH$() Function

 password$ = phash$('TRUTH')

 input 'Password': pwd$

 if phash$(pwd$) = password$ then

 print 'That was the correct password.'

 else

 print 'That was not the correct password.'

 end if

 end

password? MONEY

That was not the correct password.

Example: PHASH$() Function with Salt

 password$ = phash$('TRUTH', 23993)

 print password$

 end

fbOdJCu87od9s50kK7zuh32W

POS() Function – Search from End of String

Format:

POS(str_expr1, str_expr2[, int_expr])

The POS() function now supports a negative starting position to search from the end of a string going

backward to the beginning. The function returns ‘0’ if not found or the numeric position of the found

string.

The system function _INTEGER is also set to contain the negative starting point for a further negative

search.

 15

Example: POS() Function – Search from End of String

 print pos('this isa', 'is', -1)

 print _integer

 end

6

-2

SELECT | END SELECT Statement with CASE OF BOOLEAN

Format:

SELECT
 CASE OF boolean_expr

 --- block of code

 CASE OF boolean_expr

 --- block of code

END SELECT

The SELECT | END SELECT statement using CASE OF BOOLEAN_EXPR was added to provide an alternate,

simpler method of handling “N-way by Conditions” from expressing them in a series of “if then … else

… elseif then … end if” statements.

Example: SELECT | END SELECT Statement with CASE OF BOOLEAN_EXPR

 index = 3

 file$ = ''

 client$ = 'Jones'

 select

 case of index > 5

 print 'Index is over five'

 case of file$ = ''

 print 'file is empty'

 case of client$ = ‘Johnson’

 print ‘Client is ’; client$

 end select

 end

file is empty

 16

SORTED() Function with Arrays

Format:

SORTED(array_name[, int_expr][, true])

The SORTED() function is used to work with arrays in a sorted order using the following the parameters:

Parameter Description

sorted(array_name) Defining only the array name returns the highest index number
stored in the array.

sorted(array_name,index) Defining the array name with the index parameter returns a sort-
pointer into the array. An index of “1” is the first (lowest) value in
the sorted data (e.g., array_name(sorted(array_name,1)).

sorted(array_name,index,true) Including the third parameter “true” returns a sort-pointer using
a case sensitive sort.

If data is stored into one or more arrays using the same index number, SORTED() can be used to return

pointers, one at a time. Indexing the arrays by the pointer will then return the data sorted by the order

specified. The example below sorts each line of text read into the array by line length.

Example: SORTED() with Arrays

// To run this example, create “c:\Sheerpower\Samples\utterances.csv” containing a list of phrases in column A

 open file in_ch: name 'c:\Sheerpower\Samples\utterances.csv'

// These two arrays will dynamically expand as needed

 dim data$(0)

 dim line_len$(0)

 counter = 0

 do

 line input #in_ch, eof eof?: rec$

 if eof? then exit do

 counter++

 data$(counter) = rec$

 line_len$(counter) = str$(10000 + len(rec$)) // justify the numbers for nice sorting

 loop

 close #in_ch

// Since the line_len$() array and data arrays are related (stored using the same counter)

// indexing the data$() by the sorted order of line_len$() gives us the data in line length order

 for idx = 1 to 10

 ptr = sorted(line_len$, idx) // give us the pointer to the line_len$() array that makes it look sorted

 print data$(ptr)

 next idx

 17

// results

King size please.

She's an accountant.

She wants to hug him.

She tried it herself.

Did you get your wish?

Whose turn is it next?

Below is an example of two arrays that are loaded with parallel data. First, the array data is printed

without sorting. Next, the data is sorted by “name” and then again sorted by “age.”

Example: SORTED() with Arrays

 dim names$(10), ages(10)

 names$(1) = 'Fred' \ ages(1) = 15

 names$(2) = 'Sam' \ ages(2) = 12

 names$(3) = 'Al' \ ages(3) = 4

 print "Printing unsorted array data:"

 for i = 1 to 3

 print names$(i), ages(i)

 next i

 print

 print "Now printing array data sorted by 'name':"

 for i = 1 to 3

 index = sorted(names$,i)

 print names$(index), ages(index)

 next i

 print

 print "Now printing array data sorted by 'ages':"

 for i = 1 to 3

 index = sorted(ages, i)

 print names$(index), ages(index)

 next i

Printing unsorted array data:

Fred 15

Sam 12

Al 4

Now printing array data sorted by 'name':

Al 4

Fred 15

Sam 12

Now printing array data sorted by 'ages':

Al 4

Sam 12

Fred 15

 18

The next example illustrates using SORTED() for automatic case-regardless sorting and for case-sensitive

sorting using the parameter TRUE.

Example: SORTED() with Arrays (Case Regardless/Case Sensitive)

 dim b$(5) sorted // automatically sort the elements (case regardless)

 b$(1) = 'Apple'

 b$(2) = 'bear'

 b$(3) = 'Cat'

 b$(4) = 'dog'

 b$(5) = 'Elephant'

 print '----show from automatically sorted array--------'

 for i= 1 to 5

 print b$(i)

 next i

 print

 print '----use sorted() function -- case sensitive -------'

 for i= 1 to 5

 print b$(sorted(b$, i, true)) // TRUE parameter denotes "case sensitive"

 next i

 print

 end

 ----show from automatically sorted array--------

Apple

bear

Cat

dog

Elephant

----use sorted() function -- case sensitive -------

Apple

Cat

Elephant

bear

dog

UUID$ Function

Format:

UUID$([int_expr1][, int_expr2])

The UUID$ function returns a universally unique identifier, used to generate a unique key value. UUIDs

are often used in database tables because they are guaranteed to be unique across all computers. In

addition, using UUIDs eliminates handler programs having to monitor for key value collisions. Each time

the function is called, a new unique UUID is generated.

 19

Note: UUIDs are also often called GUIDs (Globally Unique Identifiers). For more information on UUIDs:

https://en.wikipedia.org/wiki/Universally_unique_identifier.

The UUID$ function can be called alone (uses the default format “0”), or with the optional format and/or

length parameters. The format value options are:

Format Value Description

0 The default format if no parameter is given. 128-bit UUID which is then base-64
encoded into a 22 character string.

1 32 hex digits in the order specified by the RFC 1422 so that one can attach meaning
to the hex digits.

2 32 hex digits in the order specified by the RFC 1422 but grouped with four dashes
for a total of 36 characters.

3 Same as above, but with additional { and } at the front and back. This is the standard
display format for a UUID, 38 characters in total.

Example: UUID$ with Optional Format Parameter

 print uuid$(0) // or print uuid$ - a base64-encoded UUID - this is the default if no parameters are given

 print uuid$(1) // a UUID in hex digits

 print uuid$(2) // a UUID in hex, with dashes between elements

 print uuid$(3) // a UUID in hex with dashes, enclosed with braces

 end

tD1zL_zXdESxOHyi0_iDLQ

e_0aK9UN4EqQ8gj8X8Dbaw

69B9474C44454F51BED423893BE1B115

35BB8A4E-5FA6-4A01-BB47-D3ECD065E361

Sheerpower’s default UUID format (0) returns 22 bytes. We achieve this space savings by converting the

128-bit standard internal UUID into a base-64 encoded string, and then stripping off the trailing two

“==” that the base-64 encoding generates. Then, to make the UUID URL-safe, we change any generated

“+” to “-“ and “/” to “_”.

In addition, the key values are SPARSE, and therefore cannot be easily guessed or entered in as a typo.

The default UUIDs are generated at a rate of approximately 4.5 million/second. The UUIDs using the 1,

2, and 3 formats are generated at a rate of approximately 900,000/second.

When a length parameter is provided with UUID$, it denotes the number of characters to return. If the

length is over the length of a single UUID, then multiple UUIDs are generated as needed.

https://en.wikipedia.org/wiki/Universally_unique_identifier

 20

Example: UUID$ with Optional Length Parameter

 print uuid$(0, 30) // a default UUID with a specified length

 end

J__hzcAFQkWI1vejytTe1Q2uUL2qkl

To further identify sets of keys, one method would be to PREFIX the UUIDs with a value to group them

by type (e.g., by table name or type) or with the date the UUID was generated.

Example: UUID$ with Identification Prefix

 client_uuid$ = "client_" + uuid$

 print client_uuid$

 end

client_rCS0Eo10Qki5NlLakyoQGA

Example: UUID$ with Identification Date Prefix

 date_uuid$ = date$ + uuid$(0, 50)

 print date_uuid$

 end

20200610lpkzVZtP7EOew2adNW3shQuQGA65Gww0KbUgg0Q3-YPwjL5dVD

XOR$() Function

Format:

XOR$(str_expr1, str_expr2)

The XOR$() function is used for bitwise XORing of the bits contained in two strings. XOR$() can be used

in conjunction with the UUID$ function to perform highspeed ‘one-time-pad’ encryption.

Example: XOR$() Function

 secret$ = 'hi there'

 key$ = uuid$(0, len(secret$))

 encrypted$ = xor$(secret$, key$)

 decrypted$ = xor$(encrypted$, key$)

 dump encrypted$

 print

 dump decrypted$

 end

ENCRYPTED$ Len: 8 Alloc: 40 SID: (0,608) Class 1 Dtype 14 fda$offset: 160

6D732CC0 26 50 53 44 00 07 36 0D &PSD..6.

DECRYPTED$ Len: 8 Alloc: 40 SID: (0,610) Class 1 Dtype 14 fda$offset: 204

6D732C70 68 69 20 74 68 65 72 65 hi there

 21

Sheerpower Statements

ABORT Command

Format:

ABORT [int_expr]

The ABORT command allows a Sheerpower program, when run from a batch file, to give a termination

status. The default status is “1.” You can specify your own status by adding a positive integer after the

command.

When running from a batch, it is suggested that the batch (.BAT) file code look like the following:

// “program_name” is the name of the Sheerpower program being run

 @echo off

 program_name

// use these to check for errors

 echo error level: %ERRORLEVEL%

 IF %ERRORLEVEL% NEQ 0 Echo An error was found

 IF %ERRORLEVEL% EQU 0 Echo No error found

Example: ABORT Command

// create a batch (.BAT) file named sheerpower_abort_test.bat and save it into c:\sheerpower\samples

// the batch file should contain the following:

 @echo off

 sp4gl.exe

 echo error level: %ERRORLEVEL%

 IF %ERRORLEVEL% NEQ 0 Echo An error was found

 IF %ERRORLEVEL% EQU 0 Echo No error found

 echo done

// run the batch file from the command line:

 c:\Sheerpower\Samples> sheerpower_abort_test.bat

// the Sheerpower console window will open. In the console window, type the following:

 abort 99

// Sheerpower will abort and return the following information in the command line console window:

 error level: 99

 An error was found

 done

 c:\Sheerpower\Samples>

 22

ASK SYSTEM: SPVERSION Statement

Format:

ASK SYSTEM: SPVERSION str_var

ASK SYSTEM: SPVERSION returns the current Sheerpower version and build number as an eight-

character string in the format “Vxxx.yyy” where “xxx” is the version number and “yyy” is the build

number.

The ASK SYSTEM: SPVERSION statement is used on production systems where, at runtime, the code can

determine which features can be used and which cannot be used based on the version of Sheerpower

being run.

Example: ASK SYSTEM: SPVERSION

 ask system: spversion v$

 print v$

 end

V010.099

ASSERT Statement

Format:

ASSERT boolean_expr[,str_expr]

The ASSERT statement allows you to test code elements for expected values and cause an exception if

the value returned is not as expected. If the optional string expression was given with ASSERT, then it is

displayed along with the exception.

When using the ASSERT statement, what you are “asserting” is anything that results in a TRUE value

with a Boolean expression.

Example: ASSERT Command

 filename$ = "test.spsrc"

 telephone$ = "76044233331"

 assert len(filename$) <= 100, "File name is too long!"

 assert len(telephone$) <= 10, "Telephone number is too long!"

 end

--

?? Assertion failed, details: Telephone number is too long! at MAIN.5

MAIN.5: assert len(telephone$) <= 10, "Telephone number is too long!"

 23

DIM | REDIM Statements – Dynamically Expandable Arrays

Format:

DIM array_name(0)
REDIM array_name(0)

Dynamically expandable arrays expand with use as needed in a highly optimized way. They are the

preferred way to define an array when you do not know how large the array needs to be. Dimensioning

an array by zero indicates that it is a dynamically expandable array.

• To store data into a dynamic array, specify element “0.” This tells Sheerpower to append the

data to the end of the array.

• To reduce a dynamic array to zero elements, use REDIM ARRAY_NAME().

• To find the current size of the array, use the SIZE() function.

Example: Dynamically Expandable Arrays – Appending Data

 dim taxes(0)

 taxes(0) = 45

 taxes(0) = 35

 print ‘Array elements: ‘; size(taxes)

 end

Array elements: 2

You can also specify a position to store data into as well. For example, you can specify to store data into

position “100” and, if the array is not already that size, it will be after the data is stored.

Example: Dynamically Expandable Arrays – Specifying Data Storage Position

 dim taxes(0)

 taxes(100) = 45

 print ‘Array elements: ‘; size(taxes)

 end

Array elements: 100

Note: Clusters can be used instead of arrays and are faster and more versatile.

FOR | NEXT Loop Statement – Virtually Infinite Counter

Format:

FOR num_var = int_expr
 …
 … [block of code]
 …
NEXT num_var

 24

The FOR / NEXT loop statement has been enhanced to utilize a virtually infinite counter. This is useful

when you want to a counter that counts until some condition is met (to a limit of 10 to the 18th power).

Previously, it was required to write the FOR / NEXT loop statement with an ending counter value, such

as “for index = 1 to 1000.” The “to nn” is no longer necessary in the statement. The next example

illustrates how to find all the files in the Sheerpower folder and print their names without knowing in

advance how many files there are to set the counter.

Example: FOR / NEXT Loop – Virtually Infinite Counter

 for index = 1

 file$ = findfile$('c:\Sheerpower*.*', index)

 if file$ = '' then exit for

 print 'Found '; file$

 next index

 end

Found c:\sheerpower\sheerpower.ini

Found c:\sheerpower\sp$install_runonce.spsrc

Found c:\sheerpower\sp4gl.exe

Found c:\sheerpower\sp4gl_system_info.txt

Found c:\sheerpower\spdev.exe

Found c:\sheerpower\spdev_nonsp.ini

Found c:\sheerpower\spdev_nonsp_user.ini

Found c:\sheerpower\spdev_profile_user.ini

Found c:\sheerpower\spdev_sp4gl.ini

Found c:\sheerpower\spdev_sp4gl_user.ini

Found c:\sheerpower\spdev_system_info.txt

Found c:\sheerpower\spdev_tools.ini

IF THEN Statement – THEN Optional

In IF THEN statements, “THEN” is now optional.

Example: IF THEN Statement – THEN Optional

 if abc > xyz then

 print 'do something'

 end if

Can now be written without “then”:

 if abc > xyz

 print 'do something'

 end if

 25

OPEN FILE | OPEN TABLE Statement with ACCESS UPDATE Option

Format:

OPEN FILE var_name: NAME 'file_spec'
 [, ACCESS INPUT | OUTPUT [,SHARE | SHARED] | UPDATE [,SHARE | SHARED] | OUTIN [,SHARE | SHARED]
 [,UNFORMATTED] [, UNIQUE] [, OPTIMIZE OFF] [, LOCKED]

OPEN TABLE table_name: NAME 'file_spec'
 [, ACCESS INPUT | OUTIN | UPDATE] [, LOCK] [, DATAFILE file_spec] [, OPTIMIZE OFF] [,CACHESIZE num]

You can now use either ACCESS OUTIN or ACCESS UPDATE to open a table or a file. for both input and

output. These terms are now Sheerpower synonyms.

Example: ACCESS UPDATE Option with OPEN FILE | OPEN TABLE Statement

 open table cl: name 'sheerpower:samples\client', access update, lock

 extract table cl

 include cl(state) = 'CA'

 exclude cl(phone)[1:3] = '619'

 sort ascending by cl(last)

 end extract

 print 'List of California clients by last name'

 for each cl

 print cl(first); ' '; cl(last), cl(phone)

 next cl

 close table cl

 end

List of California clients by last name

Dale Derringer (818) 223-9014

Earl Errant (408) 844-7676

OPEN FILE Statement with SHARED Option

Format:

OPEN FILE var_name: NAME 'file_spec'
 [, ACCESS INPUT | OUTPUT [,SHARE | SHARED] | UPDATE [,SHARE | SHARED] | OUTIN [,SHARE | SHARED]
 [,UNFORMATTED] [, UNIQUE] [, OPTIMIZE OFF] [, LOCKED]

You can now use either SHARE or SHARED as the second optional parameter to the OPEN FILE

statement. These terms are now Sheerpower synonyms.

Using SHARE or SHARED allows the file to be read by other processes as it is written to. In addition, its

data is automatically flushed to disk approximately every second. This is especially useful when log files

need to be viewed while a program is still running.

 26

Example: OPEN FILE Statement with SHARED Option

 open file text_ch: name 'test_file.txt', access output, shared

 print #text_ch: 'This is the first line of text.'

 print #text_ch: 'This is the second line of text.'

 close #text_ch

 open file text_ch: name 'test_file.txt'

 line input #text_ch: line_1$

 line input #text_ch: line_2$

 print line_1$

 print line_2$

 close #text_ch

This is the first line of text.

This is the second line of text.

OPEN FILE Statement with HEADERS Option

Format:

OPEN FILE num_var: NAME str_expr[,HEADERS str_expr]

The new option of HEADERS with the OPEN FILE statement is used when a RESTful API requires custom

CGI HTTP header data. Note that each custom header requires a chr$(13) + chr$(10) at the end.

The HEADERS option with OPEN FILE only has effect if opening a URL. Otherwise, it is ignored.

Example: OPEN FILE with HEADERS

 client_id$ = ‘12345’

 url$ = ‘https://www.some-url.com’

 my_headers$ = 'IntegrationToken: ' + client_id$ + chr$(13) + chr$(10)

 open file url_ch: name url$, headers my_headers$

If you have more than one custom header, end each one with a chr$(13) + chr$(10) as shown below:

 url$ = ‘https://www.some-url.com’

 my_headers$ = 'IntegrationToken: 123' + chr$(13) + chr$(10) &

 + 'user_id:' + chr$(13) + chr$(10)

 open file url_ch: name url$, headers my_headers$

 27

OPEN FILE Statement with VERB Option

Format:

OPEN FILE num_var: NAME str_expr[,VERB str_expr]

The VERB option to the OPEN FILE statement is used when interfacing to a webserver that

reacts to specific verbs such as GET, PUT, POST, DELETE, PATCH, OPTIONS, etc., also referred to

as HTTP verbs. The most common verbs are GET or POST, but some APIs request other verbs to

be used. The new VERB option allows for these cases. The VERB option only has effect if opening

a URL. Otherwise, it is ignored.

Example: OPEN FILE Statement with VERB Option

 open file my_api: name 'http://api.myurl.com', verb "DELETE"

Example: Specify Custom Header with VERB & DATA Options

open file url_ch: name 'http://office.ttinet.com/scripts/spiis.dll/echo/echo.html',

 header 'Content-Type: text/html; charset=UTF-8' + chr$(13)+chr$(10),

 verb 'POST',

 data 'id=1234,name=Fred Smith'

 do

 line input #url_ch: eof eof?: rec$

 if eof? then exit do

 print rec$

 loop

close #url_ch

delay

START TIMER Statement

Format:

START TIMER
 …
 … block of code
 …
_ELAPSED

The START TIMER statement works similar to using a stopwatch. When a program starts, its elapsed

time running is set to zero. The START TIMER statement resets the program’s elapsed time (_ELAPSED)

to zero. The _ELAPSED system function returns what the current elapsed time is in seconds.

START TIMER and _ELAPSED are used together to help find code bottlenecks by timing specific sections

of code (see also ELAPSED System Function).

Because Sheerpower is so fast, often the code to be timed must be put inside of a loop to produce non-

zero elapsed times. In this example, we iterate over the code 10,000,000 times.

 28

Example: START TIMER with _ELAPSED

 start timer

 for i = 1 to 10_000_000 // underscores can be used to make larger numbers easier to read

 next i

 print 'Elapsed time in the code above: '; _elapsed

 end

Elapsed time in the code above: .08

 29

Sheerpower Directives %

Sheerpower directives are denoted with a “%” and are invoked when the compiler builds a program

and/or when a program is compiled. The following are new and enhanced directives available for use in

Sheerpower programs.

%INCLUDE Directive for Web Scripting

Format:

%INCLUDE [CONDITIONAL | ONCE:] file_spec

By default the %INCLUDE directive allows you to put common subroutines into a separate file to be

shared among applications. The default file type if no extension is specified is .SPINC.

For the purpose of Sheerpower web scripting, %INCLUDE has been enhanced to call in other external

files that contain webpage elements, such as .HTML, .CSS, and .JS.

 %include "myfile.html"
 %include "myfile.css"
 %include "myfile.js"

If the file type is not one that includes SHEERPOWER CODE, then upon including the file, Sheerpower

surrounds the file content with [[%spscript]] tags:

 [[%spscript]]
 ...
 … contents of the file
 …
 [[/%spscript]]

Example: %INCLUDE Directive for Web Scripting

 routine output_footer

 %include '@..\wwwroot\footer.html'

 end routine

When the CONDITIONAL option is used with %INCLUDE, no error is generated if the file to be included

does not exist. This allows programs to conditionally include the files.

Example: %INCLUDE Directive with CONDITIONAL Option

 routine output_footer

 %include conditional: '@..\wwwroot\footer.html'

 end routine

When the ONCE option is used with %INCLUDE, it guarantees that the included file will be included only

once, even if the same include directive occurs elsewhere in the program or included files.

 30

Example: %INCLUDE Directive with ONCE Option

 routine output_footer

 %include once: '@..\wwwroot\footer.html'

 end routine

Note: If the file that is included is modified, the program must be re-run for it to re-include the updated

version of the file.

%TEST and %TEST_IGNORE Directives with OPTION TEST ON | OFF

Format:

OPTION TEST [ON]
 %TEST [code to compile in test mode]
 %TEST_IGNORE [code to ignore/not compile in test mode]
OPTION TEST OFF

Unit testing is available using two new directives, %TEST and %TEST_IGNORE. Lines of code that begin

with either of these directives are ignored unless the Sheerpower program is started with the /TEST

option using the command line, or the program contains the OPTION TEST ON statement.

Note: “ON” is optional to include with OPTION TEST as it is the default qualifier.

To start your Sheerpower program with /TEST using the command line, use the following format:

c:\Sheerpower> sp4gl.exe file_spec /test

Example: %TEST and %TEST_IGNORE Directives with OPTION TEST ON | OFF

 option test

 %test x$ = 'New York'

 %test y$ = 'San Diego'

 %test print 'The values are '; x$; ' and '; y$

 %test %include 'c:\sheerpower\samples\my_module.spinc'

 %test_ignore print ‘This code will not compile because it is prefixed with the %test_ignore directive.’

 %test stop

 option test off

 %test print 'This code will not compile because we are not in test mode anymore'

 end

The values are New York and San Diego

 31

ARS Statements

ASK TABLE: COUNT Statement

Format:

ASK TABLE table_name: COUNT num_var

COUNT used with the ASK TABLE statement instantly returns the number of rows in the current table.

Example: ASK TABLE: COUNT ROWS

 open table cust: name 'sheerpower:\samples\customer'

 ask table cust: count num_rows

 print num_rows

 close table cust

 end

14

ASK | SET TABLE: DATA Statement

Format:

ASK TABLE table_name: DATA str_var
SET TABLE table_name: DATA str_expr

The ASK | SET TABLE: DATA statement enables you to get all the data for the current record/row. It

eliminates the need to create fields such as WHOLE or ALL that stand for the entire data record.

ASK | SET TABLE: DATA is especially useful when copying data from one table to another where the two

tables share the same definitions (record layout).

When doing the SET, if the data is longer than the recordsize of the current record, then the data is

truncated. If the data is shorter than the recordsize of the current record, then the data is filled with

nulls (byte values of zero).

The next example shows how to copy an entire record from one table and add it to another table using

ASK | SET TABLE: DATA.

Note: The next example only works if you have the ARCHIVE_DATA and DAILY_DATA table files installed

with the Sheerpower installer into C:\Sheerpower\Samples.

 32

Example: ASK | SET TABLE: DATA

// This example only works if you have ARCHIVE_DATA and DAILY_DATA table files installed with the Sheerpower

// installer into C:\Sheerpower\Samples

 open table daily: name 'sheerpower:samples\daily_data'

 open table arch : name 'sheerpower:samples\archive_data', access update // update is a synonym for outin

 extract table arch

 end extract

 print 'Number of records in ARCHIVE_DATA: '; _extracted

 delay

 extract table daily

 ask table daily: data row$

 print row$

 // Copy add of the data from the current daily_data table record

 // into a new record in archive_data

 add table arch

 set table arch: data row$

 end add

 end extract

 extract table arch

 ask table arch: data newrow$

 print 'The daily data is now moved to the archive data table: '; newrow$

 end extract

 print

 print 'Updated number of records in ARCHIVE_DATA: '; _extracted

 end

Number of records in ARCHIVE_DATA: 0

 [Press the ENTER key to continue]

Number of records in ARCHIVE_DATA: 0

 1AMY JOHNSON 1276

 450062

100123JOSEPH FRANKLIN 2333

 72800

100046ROBERT HOWARD 2333

4 92000

The daily data is now moved to the archive data table: 1AMY

 JOHNSON 1276 450062

The daily data is now moved to the archive data table: 100123JOSEPH

 FRANKLIN 2333 72800

The daily data is now moved to the archive data table: 100046ROBERT

 HOWARD 23334 92000

Updated number of records in ARCHIVE_DATA: 3

 33

ASK | SET DATA Statement

Format:

ASK #ch: data str_var
SET #ch: data str_expr

The ASK | SET DATA statement enables you to store and retrieve temporary data without having to

read/write a temporary disk file.

When opening a file, DATA:// is a designator for a data channel. A data channel does not use any disk

space. Instead it uses memory. As a result, reading and writing a data channel is extremely fast.

Example: ASK | SET Statement with DATA://

open file mydata_ch: name 'data://'

for i = 1 to 10

 print #mydata_ch: i, sqr(i); chr$(13)+chr$(10)

next i

ask #mydata_ch: data mydata$

print mydata$

set #mydata_ch: data ‘’ //clear data channel

ask #mydata_ch: data mydata$

print mydata$

close #mydata_ch

 1 1

 2 1.414213562373

 3 1.732050807569

 4 2

 5 2.2360679775

 6 2.449489742783

 7 2.645751311065

 8 2.828427124746

 9 3

 10 3.162277660168

 34

ASK TABLE: ENGINE Statement

Format:

ASK TABLE table_name: ENGINE str_var

The ASK TABLE: ENGINE statement returns the name of the database engine that the table is controlled

by.

Example: ASK TABLE: ENGINE

 open table pers: name 'sheerpower:\samples\personalinfo'

 ask table pers: engine e$

 print e$

 close table pers

 end

ARS

OPEN TABLE with CACHESIZE Option – Increase

Format:

OPEN TABLE table_name: NAME 'table_filename', CACHESIZE num_mb

The CACHESIZE option with the OPEN TABLE statement now supports 2000MB (2GB) of cache size

(increased from 100MB).

Example: OPEN TABLE with CACHESIZE Option – Increase

 open table pay: name '@payroll', access outin, cachesize 2000

// sets up a cachesize of 2GB for the given table

SORT BY in EXTRACT | END EXTRACT with LENGTH Option

Format:

SORT [ASCENDING | DESCENDING] BY expr, LENGTH int_expr

The LENGTH option enhancement to the SORT statement provides a way to sort variable length data,

allowing for the specification of a fixed length to achieve the sorting.

The following example first trims out trailing spaces, and then sorts up to 40 characters of the customer

name. If the trimmed customer name is less than 40 characters, when sorting, Sheerpower supplies

additional characters at the end to make it 40 characters.

If the length option is not specified and the data being sorted is from a simple expression, Sheerpower

defaults to a length of 100.

 35

Example: SORT BY in EXTRACT | END EXTRACT with Length Option

 open table cust: name 'sheerpower:\samples\customer', access outin

 extract table cust

 sort by trim$(cust(name)), length 40 // sort by the first 40 characters of cust(name)

 end extract

 for each cust

 print cust(name)

 next cust

 close table cust

 end

Alpha Products Inc

Flower Power, Inc

Loprice Drug Stores, Inc

MicroNet Solutions

Monroe Data Systems

The LENGTH option to SORT is also useful when sorting “conditionally.”

In the next example, if the client’s first name begins with the letter “A” or greater, then the data will be

sorted by first names. Otherwise, the data will be sorted by the client's last name.

Note: The next example only works if you have the DAILY_DATA table files installed (from the

Sheerpower installer) into C:\Sheerpower\Samples.

Example: Sorting Conditionally using SORT BY with Length Option

 open table d_data: name 'sheerpower:\samples\daily_data', access update

 extract table d_data

 if d_data(first_name)[1:1] = 'A' then

 sort by d_data(first_name), length 40

 else

 sort by d_data(last_name), length 40

 end if

 end extract

 for each d_data

 print d_data(first_name); ' '; d_data(last_name)

 next d_data

 close table d_data

 end

AMY JOHNSON

JOSEPH FRANKLIN

ROBERT HOWARD

 36

Debugging Commands and Features

DEBUG SHOW Command

Format:

DEBUG SHOW [#chnl_expr:] var1[, var2][, var3][, …]

The DEBUG SHOW command provides a simple method to display the names and values of variables.

Optionally, the DEBUG SHOW text can be output to a file by specifying a channel number. See PRINT

CLUSTER Statement for how to print cluster variables for debugging.

Example: DEBUG SHOW

 open file log_ch: name '@debug_log.txt', access output

 a = 56

 b$ = 'hi there'

 debug show a, b$ // display in the console

 debug show #log_ch: a, b$ // output to debug_log.txt

A = 56

B$ = "hi there" (8)

DEBUG STACK Command

Format:

DEBUG STACK int_expr

The new DEBUG STACK command is used to store the stack details (up to the specified maximum stack

depth num_int) into the GLOBAL symbol. The GLOBAL symbol that contains the stack information for

each process is:

stack_nnnnnnnn

where “nnnnnnnn” is the 8-digit decimal value of the process ID (PID) assigned by Windows. The value

returned is:

nn;label1;label2;...

where “nn” is the maximum stack depth shown (specified in int_expr), and the labels are the routine

names in the stack. Steps to retrieve the PID can be found here: $DEBUG ON | $DEBUG OFF

Example: DEBUG STACK Command

 debug stack 5

 do_it

 routine do_it

 do_it_more

 end routine

 routine do_it_more

 delay

 end routine

 37

// 1) run the sample program; when it delays, get the PID in the title of the console window

// 2) open a new Sheerpower console window and type in the following two lines of code, replacing ‘nnnnnnnn’

// (in red below) with the PID including enough leading 0’s to be 8 digits in length:

 ask system, global ‘stack_nnnnnnnn’: value the_stack$

 print the_stack$ // press [Enter]

02;DO_IT.1;MAIN.2

The result of running the sample program shows: 1) the stack is two levels deep (02), 2) the top of the

stack has DO_IT (DO_IT.1), and 3) that DO_IT was called from the second line in the main program

(MAIN.2).

DUMP Statement

Format:

DUMP str_expr

The DUMP statement writes the contents of a string expression to the console window. The dump data

includes hex values. It provides a simple way to view strings of binary data. DUMP is used primarily for

debugging purposes.

Example: DUMP Statement

 a$ = 'Sally'

 dump a$

 end

A$ Len: 5 Alloc: 37 SID: (0,995) Class 1 Dtype 14 fda$offset: 0

5A162D60 53 61 6C 6C 79 Sally

The Alloc, SID, Class, Dtype, and fda$offset are data for internal use by Sheerpower developers and

subject to change.

DUMP OF TABLES Debug Output

The crash debug output that Sheerpower provides has been enhanced to include a new section of

“Dump of tables.” For each table, the dump output includes the LUN number, the last number of records

extracted, and if there is a “current” record.

--- Dump of tables ---

ADDRESS lun 4 Extracted: 0 Current: No DataFile "@..\data\ADDRESS.ARS"

AUDIT lun 5 Extracted: 0 Current: No DataFile "@..\data\AUDIT.ARS"

BANK lun 6 Extracted: 0 Current: No DataFile "@..\data\BANK.ARS"

BANK_DETAIL lun 7 Extracted: 0 Current: No DataFile "@..\data\BANK_DETAIL.ARS"

--- End of tables ---

 38

A program crash will always write out the debug dump data. Use the SHOW ALL command to force the

output of the debug text without a crash to a file “[program_name]_debug.txt.”

Example: DUMP OF TABLES Debug Output

 scanfor$ = ucase$(scanfor$)

 total = 0

 open table vendor: name 'sheerpower:samples\vendor', access update

 extract table vendor

 include scan(vendor(name), scanfor$) > 0

 print vendor(name); tab(30); vendor(phone);' '; vendor(city);

 print tab(60); vendor(balance)

 total = total + vendor(balance)

 end extract

 print '===================='

 print using 'Total: $#,###,###': total

 show all // writes debug data to the debug file of "xxx_debug.txt"

 end

// partial results

CAMILLI, JASON (655) 723-1569 FALLBROOK $8,771.50

JUDD, NATHAN (651) 728-5170 FALLBROOK $9,220.50

PIKULA, CHANCE W. (637) 728-5170 FALLBROOK $9,239.50

====================

Writing all debug information to...

 C:\Users\sarce\Desktop\test_debug.txt

Done.

// Dump of tables excerpt from debug output text file:

--- Dump of tables ---

VENDOR lun 1 Extracted: 1383 Current: No DataFile "sheerpower:samples\VENDOR.ARS"

--- End of tables ---

 39

LIST STATS Command – Output File

Format:

DEBUG ON
 STATS ON
 LIST STATS [: routine_name][, routine_name][, ...]
 STATS OFF
DEBUG OFF

The LIST STATS command has been enhanced to always create an output file when it is executed that

contains the code runtime statistics. The file name will always be in the format

“[program_name]_stats.txt” and stored in the same directory location as the source program file.

Note: Both DEBUG ON and STATS ON must be in the code prior to LIST STATS for LIST STATS to work.

Example: LIST STATS – Output File

 debug on

 stats on

 dim name$(0)

 for i = 1

 input 'Please enter your name': name$(i)

 if _exit then exit for

 print 'Hello, '; name$(i); '!'

 next i

 list stats

 stats off

 debug off

 end

Please enter your name? Tester <--- type a name and press [Enter]

Hello, Tester!

Please enter your name? exit <--- type ‘exit’ and press [Enter]

Hello, Tester!

Writing code runtime statistics to...

 C:\Sheerpower\Samples\list_stats_example_stats.txt

Done.

 40

SET | CANCEL WATCH Statements

Format:

DEBUG ON
 SET WATCH var1[, var2][, var3][,…]
 CANCEL WATCH var1[, var2][, var3][,…]
DEBUG OFF

The SET WATCH command is used to open a “watch” window that displays whenever the value of the

variable(s) being watched changes during debugging. CANCEL WATCH is used to turn off the debug

watching feature. The WATCH only watches regular assignments. It does not watch the INPUT statement

at this time.

Note: DEBUG ON must be set before using SET WATCH.

Example: SET | CANCEL WATCH

 debug on

 name$ = 'Angela'

 set watch name$

 print 'The watch window will display the current value of name$ and then the updated value as "Old" and "New"'

 delay 5

 name$ = ‘John’

 delay 10

 cancel watch name$

 debug off

// the SP4GL console window will open

The watch window will display the current value of name$ and then the updated value as “Old” and “New”

// a separate WATCH window will open:

Watching symbol NAME$

MAIN.3: set watch name$

Old: "Angela" (6)

MAIN.6: name$ = 'John'

Old: "Angela" (6)

New: "John" (4)

 41

 42

Debugging Running Programs – External Debug Commands

When a Sheerpower program is currently running in the background and you need to debug it without

shutting it down, there are a series of commands that you can send to it. These external commands

come in as a GLOBAL symbol in the form of cmd_nnnnnnnn where nnnnnnnn is the PID number.

Note: All external debug commands in Sheerpower start with a “$” symbol.

$DEBUG ON | $DEBUG OFF

Format:

$DEBUG ON
$DEBUG OFF

$DEBUG ON and $DEBUG OFF control the value of _DEBUG which returns either a TRUE or FALSE value.

TRUE if $DEBUG ON is set. FALSE if $DEBUG OFF is set. To use $DEBUG ON and $DEBUG OFF when a

program is running:

1) Get the PID of the program that is running by looking in the title bar of the open Sheerpower console

window.

Alternatively, you can use the Task Manager to retrieve the PID from the Details tab.

If there is more than one instance of sp4gl.exe running, the “Command line” column can be added

to the table shown in the Details tab which will display the file paths for each. To add the Command

line column, right click anywhere in the column headings and choose “Select columns.”

 43

Scroll down until you find “Command line” in the list, then check the box beside it and click on “OK.”

The file path is now displayed in the Command line column.

2) Convert the PID to have enough leading zeros to be exactly 8 digits in length. For example, if the PID

is 1234 then it must be converted to 00001234. If it is 52834 then it gets converted to 00052834.

3) Run a new instance of the Sheerpower console window (sp4gl.exe) on the same system as the

program and enter the following command to enable debugging:

set system, global 'cmd_nnnnnnnn': value '$debug on' // replace nnnnnnnn with the actual PID

Use the example below to see how $DEBUG ON and $DEBUG OFF works when the command is executed

externally from the running program.

Example: $DEBUG ON | $DEBUG OFF

// A simple background process that we will control externally

for idx = 1 to 500

 if _debug then

 print '... debugging'

 end if

 print idx, sqr(idx)

 delay 1

next idx

end

// see results on next page

 44

 1 1

 2 1.414213562373

 3 1.732050807569

 4 2

 5 2.2360679775

 6 2.449489742783

 7 2.645751311065

 8 2.828427124746

 9 3

 10 3.162277660168

 11 3.316624790355

 12 3.464101615138

 13 3.605551275464

 14 3.741657386774

 15 3.872983346207

 16 4

 17 4.123105625618

 18 4.242640687119

 19 4.358898943541

 20 4.472135955

... debugging // $DEBUG ON has been executed, _DEBUG = TRUE

 21 4.582575694956

... debugging

 22 4.690415759823

... debugging

 23 4.795831523313

... debugging

 24 4.898979485566

... debugging

 25 5

... debugging

 26 5.099019513593

... debugging

 27 5.196152422707

... debugging

 28 5.291502622129

... debugging

 29 5.385164807135

... debugging

 30 5.477225575052

... debugging

 31 5.56776436283

... debugging

 32 5.656854249492

... debugging

 33 5.744562646538 // $DEBUG OFF has been executed, _DEBUG = FALSE

 34 5.830951894845

 35 5.9160797831

 45

$SHOW ALL

Format:

$SHOW ALL

$SHOW ALL generates a text file located in the same directory as the program that is currently running.

This text file contains useful information such as call stack and recent routines, dump of variables, and

dump of files. The text file name will be the same as the program name but with "_show_all.txt"

appended to the end.

Note: $DEBUG ON does not need to be set in order to use $SHOW ALL.

To use $SHOW ALL when a program is running, follow the same steps as outlined in the previous section

$DEBUG ON | $DEBUG OFF. The steps are summarized below:

1) Get the PID of the running Sheerpower program.

2) In a new Sheerpower console window running on the same computer as the Sheerpower

program, enter the following command, making sure the PID has enough leading zeros to be 8

digits in length:

set system, global 'cmd_00013456': value '$show all' // replace nnnnnnnn with the actual PID

The generated text file will contain results that look like the following:

Sheerpower V010.099 show all output on 09-AUG-2021 17:30:59

Filename: C:\Sheerpower\Samples\background.spsrc

No error reported at MAIN.7

SYSTEXT---> The operation completed successfully.

_STRING--->

_INTEGER--> 0

--- Call stack and recent routines ---

MAIN.7: delay 1

--- End of calls ---

--- Dump of variables ---

IDX = 37

--- End of variables ---

--- Dump of tables ---

--- End of tables --- // continued on next page

 46

--- Dump of open files ---

Last status: The operation completed successfully. (00000000)

channel: 000 status: 00000000 00000000 name: sys$output

 open id: 1 flags : (t)input (t)output lock stream cancel

 locked : 0 row : 30 col : 1

 pagelen: 30 reclen: 2048 margin: 80 zone : 20

 cursize: 0 read : 0 write : 74 blocks: 37

 control: 43 rewind: 0 update: 0 delete: 0

--- End of open files ---

--- End of output ---

 47

New Features for Writing Improved Code

Numeric Constants Support Underscores “_”

Sheerpower now supports using underscores “_” inside of numeric constants. This makes large numbers

easier to read within the code.

Both of these numeric values are treated the same in Sheerpower:

 a = 456_789.10

 a = 456789.10

Variable Name Spelling Suggestions

If a variable name is misspelled, Sheerpower suggests variable name spelling suggestions. The variable

name suggestions are displayed in the Build tab window at the bottom.

Example: Variable Name Spelling Suggestions in SPDEV

 client_address1$ = "465 Highland Road"

 client_address2$ = " "

 client_zip$ = "92001"

 client_country$ = "USA"

 print clien_address1$ // variable name contains a typo

 end

// results displayed in the “Build” output window at the bottom of SPDEV

Build of C:\Sheerpower\Samples\test.spsrc

 Variables used, but never assigned a value:

File: C:\Sheerpower\Samples\test.spsrc

 (line 176, column 1): Unassigned variable: CLIEN_ADDRESS1$ -- try CLIENT_ADDRESS1$

 48

Comments in Sheerpower Programs

Format:

// comment text
! comment text (except !=)
/* comment text */

The above formats are all supported in Sheerpower to add comments into programs.

Inline comments in “C” style that start with /* and end with */ do not work across line boundaries yet.

Note: Any programs that have a comment line that begins with “!=” will no longer work. This is because

!= is now used in Sheerpower to mean “not equal to” along with <>.

Example: Comments in Sheerpower Programs

 dim name$(10) // setup array

 for i = 1 to 3 ! begin the loop

 input 'Please enter your name': name$(i) /* ask for a name */

 if _exit then exit for // end if they want

 print 'Hello, '; name$(i) ! print hello

 next i /* end the loop */

 end

Please enter your name? Mary

Hello, Mary

Please enter your name? exit

Support for Both “!=” and “<>” for “NOT EQUAL TO”

Sheerpower now supports "!=" when comparing two values for “not equal to.” Previously, Sheerpower

only supported the syntax of "<>."

Example: Support for Both “!=” and “<>” for “NOT EQUAL TO”

 a = 5

 b = 8

 if a <> b then

 print 'The numbers do not match!'

 end if

 if a != b then

 print 'The numbers still do not match!'

 end if

 end

The numbers do not match!

The numbers still do not match!

 49

SCOPED ROUTINE with STATIC Variables

In a SCOPED routine, by default, all variables inside the routine are private and reset to nulls and zeros

upon both entry and exit.

Any variables in the routine declared as STATIC are not reset upon entry or exit. Instead, they retain

their values on re-entry to the routine.

Example: Scoped Routine

 // ssn$ is reset upon exit, but last_date$ is not.

 print 'First time:'

 do_it

 print 'Second time:'

 do_it

 end

 scoped routine do_it

 print 'last_date$ = '; last_date$

 print 'ssn$ = '; ssn$

 static last_date$

 ssn$ = '123'

 if last_date$ <> date$ then last_date$ = date$

 print

 end routine

First time:

last_date$ =

ssn$ =

Second time:

last_date$ = 20200601

ssn$ =

LOCAL ROUTINE

In Sheerpower, you can have routines, SCOPED routines, PRIVATE routines, and LOCAL routines (see

Routines in Sheerpower). A LOCAL routine has a different way of setting up its namespace than a

PRIVATE routine. In a PRIVATE routine, the namespace is based on the name of the routine. In a LOCAL

routine, the namespace is based on the namespace of the calling routine (see Understanding Variable

“Namespace” When Using Routines).

LOCAL routines are useful to segment your code when your PRIVATE or SCOPED routines become too

long and/or complex.

Case Use Example for LOCAL ROUTINE

Your program contains a private routine that has grown in size so it is too difficult to follow easily and

you need to break it up into smaller routines for clarity, management, and scaling. Next, you identify

http://www.ttinet.com/doc/sp4gl/sheerpower_096.html#index_x_2135
http://www.ttinet.com/doc/sp4gl/sheerpower_009.html#index_x_177
http://www.ttinet.com/doc/sp4gl/sheerpower_009.html#index_x_177

 50

chunks of code within the private routine. However, the chunks of code use a lot of variables from within

the private routine. This makes it impossible to quickly copy the code and paste it into a new routine.

Why? Because the scoping of variables will be all wrong. Your new routine will have no easy access to

the calling private routine's variables.

This scenario is when you will use LOCAL ROUTINES.

A local routine inherits the scoping of the private routine that calls it. Any variables created in the new

local routine will be scoped to the private routine that called it.

A local routine must be called before it is defined (lexically). This is required so we can understand it’s

scoping when the local routine is defined later on in the code.

Note: When you call a local routine, you must prefix it with the word LOCAL. And when you define a

local routine, you must also prefix it with the word LOCAL.

To create the local routine, simply create it below the parent routine with the defining LOCAL ROUTINE

statement and END ROUTINE statement, and then cut/paste the block of code from the parent routine

into it. Insert the call to the new local routine where the block of code was cut.

These are the steps to create a local routine:

1) From within the private routine, identify a block of code that can be isolated and inserted into its

own local routine. For example, you may have a long routine that deals with financials and one

section handles retrieving payroll tax information that the rest of the routine requires.

2) Choose a name for the block of code that will be moved into its own local routine (e.g.,

retrieve_payroll_tax).

3) Highlight/select the block of code to be moved and use [Ctrl]+[X] to cut the code into the Windows

clipboard.

4) Replace the cut block of code with the call to the new local routine that includes the LOCAL prefix

(e.g., local retrieve_payroll_tax).

5) Scroll down in the code to anywhere past the END ROUTINE statement of the calling private

routine.

6) Define the new local routine – type in “LOCAL ROUTINE” and then the routine name (e.g., local

routine retrieve_payroll_tax).

7) Paste in the code block that you cut out with [Ctrl]+[V].

8) Insert the END ROUTINE statement at the end of the new local routine.

The code pasted into the newly defined local routine of pay_get_tax will be scoped exactly as if the code

was still inside of the private routine it was moved from. The local routine will have full access to variables

in the routine that called it. Any private variables that the local routine needs access to must be prefixed

with the name of the private routine and “$” and the variable name (e.g., do_it$total).

private routine my_parent

 ...

 ...

 local my_smaller_routine

 ...

 ...

end routine

 51

And the new local routine is placed below the parent routine in the code:

local routine my_smaller_routine

 ...

 ...

end routine

GROUP & META GROUP Variables

Format:

GROUP group_name: var1[, var2][, var3][, …]
META GROUP group_name: var1[, var2][, var3][, …]

The feature of GROUP and META GROUP variables is available in Sheerpower. This feature makes it easy

to both reset and print groups of variables with a single statement. The variables can be real, integer,

string or Boolean.

A GROUP variable is created by defining the group name and which variables are to be included in the

group.

A META GROUP variable is a group of groups and is created by defining the meta group name and which

GROUPS are to be included within it.

Example: Create GROUPs and META GROUP

// create two separate groups

 group clients: first_name$, last_name$, address1$, address2$, city$, state$, zip

 group products: sku$, title$, description$, weight, price, shipping$

// create a meta group with both groups

 meta group all: clients, products

PRINT GROUP STATEMENT

Format:

PRINT GROUP group_name

The PRINT GROUP statement is mainly used for debugging purposes. It provides a quick way to display

groups of related variables and their values.

The PRINT GROUP statement used with the name of a META GROUP will print the values of all the

variables in all the groups defined within the meta group. PRINT GROUP with the name of an individual

GROUP will print the values of all variables within that group only.

 52

Example: PRINT GROUP Statements

 group identity: id$, name$

 group history: last_date$, purchase_type$

 meta group customers: history, identity // put both groups into one meta group

 name$ = 'Paul' // put data in group 'identity'

 id$ = uuid$

 last_date$ = date$ // put data in group 'history'

 purchase_type$ = 'credit'

 print group customers // print meta group – the data for all groups – with this one statement

 print group identity // print only the data for one group

 end

--- Group HISTORY ---

LAST_DATE$ = "20200611" (8)

PURCHASE_TYPE$ = "credit" (6)

--- Group IDENTITY ---

ID$ = "siDWFPFaAkaVEniLZNqROg" (22)

NAME$ = "Paul" (4)

--- Group IDENTITY ---

ID$ = "siDWFPFaAkaVEniLZNqROg" (22)

NAME$ = "Paul" (4)

RESET GROUP Statement

Format:

RESET GROUP group_name

Often, when starting a new transaction there are several variables that need to be reset (cleared, re-

initialized). For example, when a user submits a form in a browser – the data stored in the variables

then need to be reset for the next user.

In order to make it easier to reset these variables, you can specify that each variable belongs to one or

more groups. This provides the ability to quickly reset the values of all variables within the named group

by using a single RESET GROUP statement.

The RESET GROUP statement used with the name of a META GROUP will reset the values of all the

variables in all the groups defined within the meta group. RESET GROUP used with the name of an

individual group will reset only the value of the variables within that group.

 53

Example: RESET GROUP Statement

 group identity: id$, name$

 group history: last_date$, purchase_type$

 meta group customers: history, identity // put both groups into one meta group

 name$ = 'Paul' // put data in group 'identity'

 id$ = uuid$

 last_date$ = date$ // put data in group 'history'

 purchase_type$ = 'credit'

 print group customers // print meta group – the data for all groups – with this one statement

 reset group customers // reset meta group – the data in all groups – with this one statement

 print group customers // show meta group "customers" has been reset

 end

--- Group HISTORY ---

LAST_DATE$ = "20200611" (8)

PURCHASE_TYPE$ = "credit" (6)

--- Group IDENTITY ---

ID$ = "tNv7gSN3GEqEJQthM5cFpQ" (22)

NAME$ = "Paul" (4)

--- Group HISTORY ---

LAST_DATE$ = "" (0)

PURCHASE_TYPE$ = "" (0)

--- Group IDENTITY ---

ID$ = "" (0)

NAME$ = "" (0)

 54

MODULE | END MODULE Statements

Format:

MODULE module_name
 ...
 … [variables, routines]
 ...
END MODULE

Modules allow you to build libraries of routines and variables without being concerned with name

conflicts.

Modules are generally placed in Sheerpower include (.SPINC) files. Use the MODULE | END MODULE

statements at the start and end of the file to define the module.

Note: Modules cannot be nested.

You must use the %INCLUDE directive at the top of your main program to include the module as a source

file into the current Sheerpower program before the program can access it. Use CONDITIONAL if you

want to conditionally include modules without generating an error if the files do not exist.

%include ‘file_spec’
%include conditional: 'file_spec'

Example: %INCLUDE MODULE

 %include conditional: 'C:\Sheerpower\Samples\client_module.spinc' // no error returned if file not found

To access a routine or variable within a module from the main program, the format is:

module_name.object

where “module_name” is the name of the module, and “object” is a routine or variable within the

module. There is a DOT (.) between the module name and the object name.

Example: Access Routine or Variable in a Module

// access the “get_client” routine from module “client_maintenance” from within the main program

 client_maintenance.get_client

// access the variable “date_added$” from module “client_maintenance” from within the main program

 print client_maintenance.date_added$

Variables and routines in the main program can be accessed from within a module using the format:

main_program_name.object

where “object” is the name of the variable or routine in the main program. For example, to access a

routine called “update_transaction” in a main program named “abc_manufacturing_tracker,” you

would use this line of code in your module routine:

Example: Access Routine or Variable in a Module

// access the “update_client” routine from the main program “abc_processing” from within a module

 abc_processing.update_client

 55

LOGICALS, SYMBOLS & GLOBALS: Interprocess Communication Methods

Sheerpower provides three major methods for interprocess communication:

Logicals Survive a system reboot.

Symbols Reset after a system reboot.

Globals Reset when all Sheerpower programs have been terminated.

1. Logicals

Format:

SET | ASK SYSTEM, LOGICAL str_expr: VALUE str_expr

Logicals are available system wide. Logicals use registry keys but persist through a system reboot. In

addition, logicals can be used in a file specification just like a drive letter can be used, or to store data

such as configuration values for a configuration program that asks for the company name.

Example: SET | ASK SYSTEM with LOGICAL

 set system, logical ‘company’: value ‘Touch Technologies, Inc.’

 ask system, logical ‘company’: value the_company$

 print the_company$

 set system, logical 'Sheerpower': value 'c:\sheerpower'

 ask system, logical 'Sheerpower': value z$

 print 'Logical set to '; z$

 end

Touch Technologies, Inc.

Logical set to c:\sheerpower

 56

2. SYMBOLS

Format:

SET | ASK SYSTEM, SYMBOL str_expr: VALUE str_expr

Symbols are available system wide to other Sheerpower processes. They persist even if all Sheerpower

programs have been closed. They use Windows Registry Keys, so can also be read and written to by non-

Sheerpower programs. Symbols do not survive a system reboot. Since symbols do not persist, you can

ask for the value of a symbol. If the symbol is blank but it should have had a value, it means the system

has rebooted.

Example: SET | ASK SYSTEM with SYMBOL

// this sample just shows the syntax

 ask system, symbol 'uptime': value start_time$

 set system, symbol 'uptime': value fulltime$

3. GLOBALS

Format:

GLOBAL str_expr: VALUE str_expr

Globals are available system wide, are extremely fast, and are all deleted when the last Sheerpower

program closes. Globals are ideal for one Sheerpower program to rapidly communicate with other

Sheerpower programs. Globals are the preferred method of interprocess communication in

Sheerpower.

In this example, the first program starts the second one – the second has a loop that, every once in a

while, checks the first one for something also sends data to another program.

// this sample just shows the syntax

 ask system, global 'uptime': value start_time$

 set system, global 'uptime': value fulltime$

In addition, once every fraction of a second, each Sheerpower program writes out two globals that

contain program-specific information. The names take the form:

label_nnnnnnnn

stack_nnnnnnnn

…where “nnnnnnnn” is the PID (Process ID) of the Sheerpower program. The PID is assigned by Windows

automatically.

These globals can be used to monitor the progress of any Sheerpower program that is running.

 57

CLUSTERS in Sheerpower

When programming, there is often a need to combine multiple variables into a single named object.

Doing so makes it easier to keep track of your variables and adds clarity to your code. In Sheerpower,

this object is called a CLUSTER.

Each cluster is given a name and a list of variables associated with that name. You can think of cluster

variable names as you would column headings in a spreadsheet. A Sheerpower cluster can be either a

scalar cluster (one dimensional) containing no rows, or a cluster array containing rows and columns like

an in-memory spreadsheet. In fact, cluster arrays can easily contain spreadsheet information. Because

of this, Sheerpower includes a rich set of features to input spreadsheet files directly into clusters and

perform operations on them, including database-like operations of sorting, including, excluding, and

searching.

Note: You can have up to 512 clusters in a single Sheerpower program, and up to 256 variables in each

cluster.

Creating Sheerpower Clusters

Format:

CLUSTER cluster_name: var1[, var2][, var3] … [, var256]

To create a cluster in Sheerpower (scalar or array), first the cluster name and associated related variable

names are defined using the format above.

Notice that the format for referencing cluster variables is:

cluster_name->var_name

…with no spaces entered around the “->” symbols. The variable names assigned will become “headers”

used when outputting cluster data with the PRINT CLUSTER statement (mainly for debugging purposes).

Creating Multiple Related Clusters

Format:

CLUSTER cluster_name USING root_cluster_name

If you have multiple clusters all based on the same “root” cluster, you can define the root cluster once

and then reference it when defining related clusters. In this example, the MEALS cluster first defined

and then used to further define the related breakfast, lunch, and dinner clusters. The MEALS cluster

becomes the root cluster.

 58

Example: Creating Multiple Related Clusters

 cluster meals: protein$, liquid$, carb$

 cluster breakfast using meals

 cluster lunch using meals

 cluster dinner using meals

 breakfast->protein$ = “eggs”

 breakfast->liquid$ = “tea”

 breakfast->carb$ = “toast”

 lunch->protein$ = “chicken”

 lunch->liquid$ = “coffee”

 lunch->carb$ = “rice”

 dinner->protein$ = “steak”

 dinner->liquid$ = “wine”

 dinner->carb$ = “potatoes”

ADD CLUSTER Statement

There are three ways to add rows to a cluster that contains multiple rows of data. The first (and less

common method) is to explicitly specify each row to be populated using SET CLUSTER to set the new

row to be added as current. Then, the new data can be populated into the row. See SET CLUSTER

Statement for more details.

Format:

SET CLUSTER cluster_name: ROW int_expr

 If the row number specified exceeds the current number of rows in the cluster, the cluster automatically

expands to accommodate it.

The next example shows how to use SET CLUSTER to add data into a cluster to the current row.

Example: Use SET CLUSTER to Add Data in Explicit Row Number

 cluster payroll: tax, gross

 print "Payroll cluster has no rows of data added yet: "; size(payroll)

 set cluster payroll: row 2 // make the current row be “2”

 payroll->tax = 42.57

 payroll->gross = 200

 print "Cluster now has: "; size(payroll); " rows."

 set cluster payroll: row 15 // make the current row be “15”

 payroll->tax = 52

 payroll->gross = 230

 print "Cluster now has: "; size(payroll); " rows."

 end

 59

//results

Payroll cluster has no rows of data added yet: 0

Cluster now has: 2 rows.

Cluster now has: 15 rows.

The second and preferred method to populate a cluster is to use the ADD CLUSTER statement to add

the new row to the end of the cluster.

Format:

ADD CLUSTER cluster_name[: ROW int_expr]

In the next example, a new cluster array is created with the name “student” in the first line. Each row

of the cluster will contain information on a different student: name, age, and grade level. A total of

three students are added, making the total size of the cluster “3.”

Example: ADD CLUSTER Statement

 cluster student: name$, age

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 print size(student)

 end

3

Note: Unlike the ADD TABLE statement, ADD CLUSTER does not have a corresponding END ADD

statement.

The ADD CLUSTER statement establishes a new row. In the last example, since the cluster was newly

created, the first ADD CLUSTER statement created row 1.

 add cluster student

 60

The next lines of code below the first ADD CLUSTER statement stored information into each variable of

row 1, just like storing data into the columns of a row in a spreadsheet.

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 Column #1 Column #2 Column #3

Headers → Name Age Level

Row #1: Joan Ark 18 12

The next two ADD CLUSTER statements created and added data into rows 2 and 3.

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 Column #1 Column #2 Column #3

Headers → Name Age Level

Row #1: Joan Ark 18 12

Row #2: John Smith 16 10

Row #3: Desmond Jones 15 10

Note: If you first create a scalar cluster with data stored into the variables and then transform the cluster

into a cluster array by adding rows to it, the initial data that was stored into the scalar cluster variables

will be deleted.

And the third method to populate a cluster is with a shortcut of ADD CLUSTER when adding rows to a

cluster that contains ONLY constant data.

Example: ADD CLUSTER Statement with Constant Data SHORTCUT

cluster people: id$, firstname$, lastname$

add cluster people: id$='one', firstname$='Fred', lastname$='Smith'

add cluster people: id$='two', firstname$='Sally', lastname$='Sue'

 61

SET CLUSTER Statement

Format:

SET CLUSTER cluster_name: ROW num_expr

The SET CLUSTER statement is used to make a row CURRENT. After adding a new row, that row is said

to be current. To access the information from a different row, it must first be made current, as shown

in the next example.

Example: SET CLUSTER Statement

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Shirley Rogers”

 student->age = 12

 student->level = 6

 add cluster student

 student->name$ = “John Smith”

 student->age = 13

 student->level = 6

 add cluster student

 student->name$ = “Andrea Johnson”

 student->age = 13

 student->level = 7

 print ‘Third row is current: ‘; student->name$

 print

 set cluster student: row 1

 print ‘First row is current: ‘; student->name$

 end

Third row is current: Andrea Johnson

First row is current: Shirley Rogers

 62

ASK CLUSTER Statement

Format:

ASK CLUSTER cluster_name: row num_var

The ASK CLUSTER statement is used to find out which row is current.

Example: ASK CLUSTER Statement

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$ = '12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight = 1.01*i

 client->age% = 101*i

 next i

 set cluster client: row 3

 ask cluster client: row x

 print x

 end

3

SIZE() Function

Format:

SIZE(cluster_name)

The SIZE() function is used to find out how many rows are in a cluster.

Example: SIZE() Function

 cluster client: ssn$, id$, weight, age%

 for I = 1 to 5

 set cluster client: row i

 client->ssn$ = '12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight = 1.01*i

 client->age% = 101*i

 next i

 print size(client)

 end

5

 63

COLLECT CLUSTER | END COLLECT Statements

Format:

COLLECT CLUSTER cluster_name
 …
 … [block of code]
 ...
END COLLECT

When working with cluster arrays, rows are typically operated on one at a time. The COLLECT CLUSTER

| END COLLECT statements are used to collect each row.

Note: In Sheerpower, “COLLECT” and “_COLLECTED” are the equivalent of “EXTRACT” and

“_EXTRACTED” and can be used interchangeably. See Full List of Synonyms in Sheerpower.

Example: COLLECT CLUSTER | END COLLECT Statements

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 ages = 0

 counter = 0

 collect cluster student

 print student->name$, student->age, student->level

 ages = ages + student->age

 counter++

 end collect

 print ‘The average age is ‘; ages/counter

 end

Joan Ark 18 12

John Smith 16 10

Desmond Jones 15 10

The average age is 16.3333333333333333

 64

COLLECT | END COLLECT iterates through each row of a cluster. While doing so, it creates a COLLECTION

of rows. A collection can be a subset of the entire cluster array and can be sorted by various criteria (see

INCLUDE, EXCLUDE and SORT BY Statements for more on sorting).

To iterate through a collection, use the FOR | NEXT loop statement.

The next example sorts the students by name and then prints out the sorted list.

Example: FOR | NEXT Statement to Iterate Through a Collection

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 collect cluster student

 sort by student->name$

 end collect

 for each student

 print student->name$

 next student

 end

Desmond Jones

Joan Ark

John Smith

 65

UNIQUE Option with COLLECT | END COLLECT Statements

COLLECT CLUSTER cluster_name[: UNIQUE cluster_name->var_name]
 …
 … [block of code]
 ...
END COLLECT

The COLLECT CLUSTER statement can be used with the UNIQUE option to find each unique occurrence

of a given cluster field.

The next example shows how to create a collection of unique cluster field occurrences – collecting the

count of unique grade levels using _COLLECTED, and then printing out each level with the corresponding

count of students.

Example: COLLECT | END COLLECT with UNIQUE Option

 cluster student: name$, age, level

 add cluster student

 student->name$ = "Joan Ark"

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = "John Smith"

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = "Desmond Jones"

 student->age = 15

 student->level = 10

 collect cluster student: unique student->level

 end collect

 count = _collected

 for each student

 count = _collected // store the count of students in the current level

 print student->level, count

 next student

 end

 12 1

 10 2

 66

INCLUDE, EXCLUDE and SORT BY with COLLECT | END COLLECT Statements

Format:

INCLUDE | EXCLUDE cluster_name->logical_expr
SORT BY cluster_name->var_name

INCLUDE and EXCLUDE statements can be used include or exclude specific rows in a cluster when

creating a collection. The SORT BY statement is used to sort a collection. Any number of INCLUDE,

EXCLUDE, or SORT BY statements can be used on a cluster array.

The next example shows how to create a collection that excludes students whose age is greater than

18.

Example: INCLUDE, EXCLUDE, and SORT BY Statements

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 collect cluster student

 exclude student->age > 16 // do not collect records where the age is greater than 16

 sort by student->name$ // sort the records alphabetically by name

 end collect

 for each student

 print student->name$

 next student

 end

Desmond Jones

John Smith

 67

CLUSTER INPUT Statement

Format:

CLUSTER INPUT NAME file_spec[, DATA str_expr][, #chnl_expr]
 [, HEADERS int_expr][, INCLUDE str_expr][, EXCLUDE str_expr]
 [, TAB][, RECORD str_delim][, FIELD str_delim]: cluster_name

The CLUSTER INPUT statement is used for inputting data directly into a cluster array, such as large

spreadsheets in the .CSV format. By default, CLUSTER INPUT uses a comma delimiter to input comma

separated files (e.g., .CSV, .TXT, etc.)

The options available for use with CLUSTER INPUT are listed below.

Parameter Description

DATA Used to specify rows containing specific values to input into the cluster.

#CHNL_EXPR Specify an open channel to input the data from.

HEADERS Used to skip header rows (with a numeric value to indicate the number of rows
to skip).

INCLUDE | EXCLUDE Used to include and exclude specific columns by column ID letters or numbers
in a comma separated list. Supports numeric or alphanumeric column IDs (e.g.,
“1,3,5” and “a,b,ac”) and column ranges (e.g., “a-ab”) and combinations of both
(e.g., “1,3,5-10”).

TAB Changes the default delimiter to be a TAB for tab delimited data files (e.g., TSV)

RECORD, FIELD Used to specify custom record and field delimiters.

To input the data from a .CSV spreadsheet, first define the cluster and cluster variables, then use

CLUSTER INPUT to input the spreadsheet data into the cluster while skipping any header rows using the

HEADERS option (“HEADER” will work too).

 cluster cities: city$, country$, population, region$, lat$, lng$

 cluster input name ‘@world_cities.csv’, headers 1: cities // skips inputting the single header line at the top

CLUSTER INPUT does the following:

• opens the file

• reads a line of data from the file

• breaks the line up into fields using the delimiter, honoring quoted data

• makes a new cluster array row at the end of the array

• stores each column (field) into the corresponding cluster variable

• reports any data conversion errors if a non-numeric is stored into a numeric variable

• ignores extra fields if there are more fields than cluster variables and ignores extra variables

• continues until the entire file has been read

• closes the file

 68

If the spreadsheet is TAB delimited (.TSV) use the TAB option as shown below..

Example: CLUSTER INPUT with TAB

 cluster input name ‘cities_file.tsv’, tab: cities

If the file has a custom field delimiter, use the FIELD option, and specify the delimiter as a string

expression.

Example: CLUSTER INPUT with FIELD Option for Custom Delimiter

 cluster input name ‘cities_file.txt’, field ‘~’: cities

Sheerpower can also input data from files that have special record and field delimiters, such as EDI

(Electronic Data Interchange) files, by using the RECORD and FIELD options.

For example, an EDI X12 file uses a tilde (~) to end each record, and an asterisk (*) for each field. To

input an EDI file into a cluster:

Example: CLUSTER INPUT with RECORD and FIELD Options for Delimiters

 cluster input name ‘some_edi_file.x12’, record '~', field '*’: cities

There are situations where you only want to work with specific rows of data in a spreadsheet. In these

cases, use the DATA option with CLUSTER INPUT to input one row at a time, examine the data, and then

conditionally input the data into a cluster array.

Example: CLUSTER INPUT with DATA Option (Input Specific Rows)

 cluster cities: city$, country$, population, region$, lat$, lng$

 open file cities_ch: name '@world_cities.csv'

 my_row$ = 'San Diego, US, 3, 32.715, -117.161'

 cluster input data my_row$, headers 1: cities

 print cluster cities

"San Diego"," US",3," 32.715"," -117.161",""

Sheerpower can also read data directly into a cluster from an open channel.

Example: CLUSTER INPUT with Open Channel

 cluster cities: city$, country$, population, region$, lat$, lng$

 open file cities_ch: name '@world_cities.csv'

 cluster input #cities_ch: cities

 close #cities_ch

 print cluster cities: all

CITY,COUNTRY,POPULATION,REGION,LAT,LNG

"Sandwich","US",34886,"MA","41.7588889","-70.4944444"

"Minot","US",34885,"ND","48.2325000","-101.2958333"

"Leavenworth","US",34880,"KS","39.3111111","-94.9222222"

"Azogues","EC",34877,"04","-2.7333333","-78.8333333"

"Alpharetta","US",34869,"GA","34.0752778","-84.2941667"

"Cumberland","US",34843,"RI","41.9666667","-71.4333333"

 69

Sometimes you only want to input selected columns from the spreadsheet. This can be done using either

the INCLUDE or EXCLUDE options. Specifying only the columns needed can significantly speed up the

input of very large files.

Example: CLUSTER INPUT with INCLUDE and EXCLUDE

 cluster cities: city$, population

 open file cities_ch: name '@world_cities.csv'

 cluster input name ‘@world_cities.csv’, include ‘a,c’: cities // only input columns “a” and “c”

 print cluster cities, header ‘CITY,POPULATION’:all

 end

CITY,POPULATION

"Dzierzoniow",34888

"Sandwich",34886

"Minot",34885

"Leavenworth",34880

"Azogues",34877

INCLUDE and EXCLUDE can take either individual column ID names “a,b,c,aa,bz” or ranges “a-c,aa,bz.”

Column numbers are also supported “1-3,27.”

 cluster input name ‘@world_cities.csv’, exclude ‘b-d’: cities // input all columns except “b” through “d”

PRINT CLUSTER Statement

Format:

PRINT CLUSTER cluster_name[, #chnl_expr][, HEADER str_expr]
 [, INCLUDE str_expr][, EXLUDE str_expr][, TAB]
 [, RECORD str_delim] [, FIELD str_delim][, LIST][, UNQUOTED][:ALL | ROW int_expr]

The PRINT CLUSTER statement is used to output the contents of a cluster to a file. By default, PRINT

cluster outputs the value of each variable in the current row as a comma delimited list. If the variable is

a string variable, quotes are placed around the data.

The options available for use with PRINT CLUSTER are listed below.

Parameter Description

#CHNL_EXPR Specifies the channel number to output the print data to.

INCLUDE | EXCLUDE Limit which variables to output given their relative column positions
specified in a comma separated list. Supports numeric or alphanumeric
column IDs (e.g., “1,3,5” and “a,b,ac”) and column ranges (e.g., “a-ab”) and
combinations of both (e.g., “1,3,5-10”).

HEADER | HEADERS Used to specify a custom header row when used with the ALL option. A null
header string suppresses outputting any header.

 70

LIST Outputs a vertical list of variable names and their values. This is useful when
debugging to easily see each variable and its value.

UNQUOTED Suppresses placing quotes around string data. Some types of delimited files
do not support quoted data (e.g., EDI files).

TAB | RECORD | FIELD Used to specify record and field (column) delimiters. The default delimiter is
a “new line” for records and a comma for fields.

ALL Prints all of the variables from all cluster rows with a default header
generated from the cluster variable names.

ROW Prints the variables and their values of the row specified in int_expr.

 Example: PRINT CLUSTER – Default

 cluster client: ssn$, id$

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 next i

 set cluster client: row 1

 print cluster client

"12-34-56-1","1"

To print all rows in a cluster, use the ALL option. By default, the headers (consisting of the variable

names) will be printed as well.

Example: PRINT CLUSTER: ALL with Default Header

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client: all

SSN,ID,WEIGHT,AGE

"12-34-56-1","1",1.01,101

"12-34-56-2","2",2.02,202

"12-34-56-3","3",3.03,303

"12-34-56-4","4",4.04,404

"12-34-56-5","5",5.05,505

 71

To print all rows in a cluster with custom headers, use the HEADERS option with a list of headers defined

in a string.

Note: You can use “HEADERS” or “HEADER” – both will work (Sheerpower synonyms).

Example: PRINT CLUSTER: ALL with Custom Headers

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client, headers 'COLUMN 1,COLUMN 2,COLUMN 3,COLUMN 4': all

 end

COLUMN 1,COLUMN 2,COLUMN 3,COLUMN 4

"12-34-56-1","1",1.01,101

"12-34-56-2","2",2.02,202

"12-34-56-3","3",3.03,303

"12-34-56-4","4",4.04,404

"12-34-56-5","5",5.05,505

To print all rows in a cluster without the headers, use the HEADERS option and define a null string.

Example: PRINT CLUSTER: Headers Suppressed

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client, headers " ": all

 end

"12-34-56-1","1",1.01,101

"12-34-56-2","2",2.02,202

"12-34-56-3","3",3.03,303

"12-34-56-4","4",4.04,404

"12-34-56-5","5",5.05,505

 72

To print a list of the cluster variables and their values for the current row, use the LIST option. Use the

ALL option to print a list of each cluster variable and values.

Example: PRINT CLUSTER: LIST

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client, list

 end

--- Row 5 ---

CLIENT->SSN$ = "12-34-56-5" (10)

CLIENT->ID$ = "5" (1)

CLIENT->WEIGHT = 5.05

CLIENT->AGE% = 505

To print a specific row in the cluster, use the ROW option.

Example: PRINT CLUSTER: ROW

 cluster client: ssn$, id$, weight, age%

 for i=1 to 10

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client: row 5

 end

"12-34-56-5","5",5.05,505

 73

To output the print results to a channel, specify an open channel as shown in the next example.

Example: PRINT CLUSTER to an Open Channel

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 open file print_ch: name ‘@cluster_print.txt’, access update // print results written to cluster_print.txt

 print cluster client, #print_ch: all

 close #print_ch

To include or exclude specific columns to print, use the INCLUDE or EXCLUDE options. INCLUDE and

EXCLUDE can take a list of individual column numbers “1,3,5” or ranges “1-3,7-9” or a combination of

both ranges and individual column numbers “1-3,27.” Column ID names are also supported, such as

“a,b,d-r,aa,bd-bf,ga.”

Example: PRINT CLUSTER with INCLUDE Option

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client, include '2-4',headers 'ID,WEIGHT,AGE'

 end

ID,WEIGHT,AGE

"5",5.05,505

Example: PRINT CLUSTER with EXCLUDE Option

 cluster client: ssn$, id$, weight, age%

 for i=1 to 5

 set cluster client: row i

 client->ssn$='12-34-56-' + str$(i)

 client->id$ = str$(i)

 client->weight=1.01*i

 client->age% = 101*i

 next i

 print cluster client, exclude '3'

"12-34-56-5","5",505

 74

To print different record or field delimiters, use the RECORD and FIELD options with the delimiter

specified in a string expression.

Example: PRINT CLUSTER with RECORD and FIELD Options

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 print cluster student, record '~', field '*’: all

 end

NAME*AGE*LEVEL~

"Joan Ark"*18*12~

"John Smith"*16*10~

FINDROW() Function

Format:

FINDROW(cluster_name->var_name, str_expr[, int_expr1][, int_expr2])

The FINDROW() function is used to search a cluster array for information and supports all data types.

The FINDROW() function is highly optimized. It can perform over 10 million searches per second if the

data is found, and 15 million per second if the data is not found. This makes FINDROW() ideal for tasks

that require fast lookups. If the search is successful, the “found” cluster array row is now current.

Given the cluster name, variable to search in, and data to be searched for, FINDROW() returns either

the first row where the data was found or returns a “0” if the data was not found.

FINDROW() has an optional third parameter to find the Nth occurrence of a value defined in int_expr1.

FINDROW() locates the Nth occurrence of any given value at a rate of over 10 million searches per

second.

Format Option Description

0 The default if left undefined in int_expr2; perform case-regardless searches.

1 Perform case-sensitive searches. When using this parameter, be sure to also include
the third parameter int_expr1 to define the Nth occurrence to find (e.g., “1” to find
the first occurrence by default).

 75

Note: After setting the format option to “1” to perform case-sensitive searches with FINDROW(), the

setting remains “sticky” until the program ends or the default format option of “0” is set.

Example: FINDROW() Function

 cluster student: name$, age, level

 add cluster student

 student->name$ = “Joan Ark”

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = “John Smith”

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = “Desmond Jones”

 student->age = 15

 student->level = 10

 add cluster student

 student->name$ = “joan ark”

 student->age = 18

 student->level = 12

 print findrow(student->name$, “John Smith”, 1, 1) // find the first instance of John Smith, case sensitive

 print findrow(student->age, 14) // none will be found

 print findrow(student->name$, "joan ark", 1) // first instance, still case sensitive (sticky setting)

 print findrow(student->name$, "joan ark", 1, 0) // first instance, now case regardless

 end

 2

 0

 4

 1

Directly after calling the FINDROW() function, the variable _COLLECTED contains the number of

occurrences of whatever was found.

The example on the next page shows how to use FINDROW() to find specific instances of data in a

cluster, print out how many instances were found using _COLLECTED, and then print out the variable

values for each row found in a FOR NEXT loop statement.

 76

Example: FINDROW() with _COLLECTED

 cluster student: name$, city$

 add cluster student

 student->name$ = "Joan Ark"

 student->city$ = "New York City"

 add cluster student

 student->name$ = "Jason Nordahl"

 student->city$ = "Helena"

 add cluster student

 student->name$ = "Frank Abbott"

 student->city$ = "San Diego"

 add cluster student

 student->name$ = "Sarah Walters"

 student->city$ = "San Diego"

 row = findrow(student->city$, 'San Diego')

 print ‘Number of students from San Diego: ‘; _collected

 for index = 1 to _collected

 row = findrow(student->city$, “San Diego”, index)

 print student->city$, student->name$

 next index

 end

2

FINDROW() with Synthetic Keys

A synthetic key is the result of creating a data field using other data fields. In Sheerpower, synthetic keys

are used to search a cluster using multiple variables. This method is significantly more efficient than

sequentially searching by individual variables (typically a million times faster for large clusters).

For example, you want to perform lookups in a cluster given a last name and a birthdate. However,

there is no variable in the cluster that contains both the last name and birthdate. The solution is to

create a synthetic key. The basic steps are listed below.

1) Add new variable to the cluster. This will be the synthetic key.

2) Populate the new variable with the key lookup information.

3) Use FINDROW() to do the key lookups.

 77

Example: FINDROW() Lookups with Synthetic Keys

// Do lookups using a synthetic key

cluster student: first_name$, last_name$, lookup_key$

// Add a few students

add cluster student: first_name$='Fred', last_name$ = 'Smith'

add cluster student: first_name$='Sally', last_name$ = 'Sue'

// Set up the synthetic key for lookups

collect cluster student

 student->lookup_key$ = left(student->first_name$, 1) + student->last_name$

end collect

do

 line input 'First initial of the first name and last name': mykey$

 if mykey$ = '' then exit do

 row = findrow(student->lookup_key$, mykey$)

 if row = 0 then

 print '?? Could not find: '; mykey$

 repeat do

 end if

 print 'Found: '; student->first_name$;' '; student->last_name$

loop

end

First initial of the first name and last name? fsmith //  type in “fsmith”

Found: Fred Smith

First initial of the first name and last name? ssue

Found: Sally Sue

First initial of the first name and last name? ajones

?? Could not find: ajones

First initial of the first name and last name? exit

 78

JSON$() Function

Format:

str = JSON$(cluster_name[,num_expr])

Given a cluster and optional row number, the JSON$() function generates the appropriate JSON string.

To create JSON objects using clusters, see Example: Embedded Cluster Template JSON Objects Using

PREFIX and Clusters with Adhoc JSON Objects.

Parameter Description

0 Default – JSON is generated for the current row.

-1 JSON is generated for all rows as a JSON array.

Specified row > 0 JSON is generated for the specified row.

Example: JSON$() Function

 cluster name: first$, last$

 cluster multi: ssn$, prefix cluster name, tax, is_okay?

 add cluster multi

 multi->ssn$ = '111-22-3333'

 multi->name->first$ = 'Mister'

 multi->name->last$ = 'Smith'

 multi->tax = 45.67

 multi->is_okay? = true

 add cluster multi

 multi->ssn$ = '222-33-4444'

 multi->name->first$ = 'Mister2 "they say"'

 multi->name->last$ = 'Smith2'

 multi->tax = 45.678

 multi->is_okay? = false

 print 'Current row json'

 x$ = json$(multi)

 print x$

 print

 print 'Row one json'

 x$ = json$(multi, 1)

 print x$

 print

 print 'All rows json'

 x$ = json$(multi, -1)

 print x$

 end

https://www.json.org/

 79

Current row json

{

 "multi":

 {

 "ssn":"222-33-4444",

 "name": {

 "first":"Mister2 \"they say\"",

 "last":"Smith2"

 },

 "tax":45.678,

 "is_okay":false

 }

}

Row one json

{

 "multi":

 {

 "ssn":"111-22-3333",

 "name": {

 "first":"Mister",

 "last":"Smith"

 },

 "tax":45.67,

 "is_okay":true

 }

}

All rows json

{

 "multi":[

 {

 "ssn":"111-22-3333",

 "name": {

 "first":"Mister",

 "last":"Smith"

 },

 "tax":45.67,

 "is_okay":true

 },

 {

 "ssn":"222-33-4444",

 "name": {

 "first":"Mister2 \"they say\"",

 "last":"Smith2"

 },

 "tax":45.678,

 "is_okay":false

 }

]

}

 80

COPY CLUSTER Statement

Format:

COPY CLUSTER cluster_name TO cluster_name [: ALL | APPEND]

The COPY CLUSTER statement is used to copy data from one cluster to another. By default, COPY

CLUSTER copies only the current record from the source to the destination.

Note: The source and destination clusters must have the same cluster “root” (see Creating Multiple

Related Clusters).

The ALL and APPEND parameters are available to use with the COPY CLUSTER statement.

Parameter Description

ALL Copies all rows starting with row one of the cluster source to the corresponding
destination cluster array row.

APPEND Copies all rows starting with row one of the source cluster, appending each row to the
end of the destination cluster.

Example: COPY CLUSTER Statement

 cluster student: name$, age, level

 add cluster student

 student->name$ = "Joan Ark"

 student->age = 18

 student->level = 12

 add cluster student // this record will be “current”

 student->name$ = "Desmond Jones"

 student->age = 15

 student->level = 10

 cluster new_student using student // creates a new cluster using the source as a template

 copy cluster student to new_student // copy only the “current” record from student to new_student

 print cluster new_student, headers ‘’: all // print all the records with headers suppressed

"Desmond Jones",15,10

 81

Example: COPY CLUSTER Statement with ALL Option

 cluster student: name$, age, level

 add cluster student

 student->name$ = "Joan Ark"

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = "John Smith"

 student->age = 16

 student->level = 10

 cluster new_student using student // creates a new cluster using the source as a template

 copy cluster student to new_student: all // copy all the records

 print cluster new_student: all // print all the records with headers

NAME,AGE,LEVEL

"Joan Ark",18,12

"John Smith",16,10

See the next page for the example using COPY CLUSTER with the APPEND option.

 82

Example: COPY CLUSTER Statement with APPEND Option

 cluster student: name$, age, level

 add cluster student

 student->name$ = "Joan Ark"

 student->age = 18

 student->level = 12

 add cluster student

 student->name$ = "John Smith"

 student->age = 16

 student->level = 10

 add cluster student

 student->name$ = "Desmond Jones"

 student->age = 15

 student->level = 10

 cluster new_student using student // creates a new cluster using the source as a template

 add cluster new_student // add one record

 new_student->name$ = "Eric James"

 new_student->age = 19

 new_student->level = 12

 print 'New cluster with one record:'

 print cluster new_student: all

 print

 copy cluster student to new_student: append

 print 'New cluster with 3 records appended to the 1st with headers suppressed:'

 print cluster new_student, header ' ': all

 end

New cluster with one record:

NAME,AGE,LEVEL

"Eric James",19,12

New cluster with 3 records appended to the 1st with headers suppressed:

"Eric James",19,12

"Joan Ark",18,12

"John Smith",16,10

"Desmond Jones",15,10

 83

RESET CLUSTER Statement

Format:

RESET CLUSTER cluster_name[: ALL]

The RESET CLUSTER statement is used to reset either the value of the current cluster row or the entire

cluster to nulls and zeros. This statement works for scalar clusters as well.

By default, RESET CLUSTER resets all values in the current row to nulls and zeros.

Example: RESET CLUSTER Statement – Current Row

 cluster client: ssn$, id$

 for i = 1 to 5

 set cluster client: row i

 client->ssn$ = '12-34-56-' + str$(i)

 client->id$ = str$(i)

 next i

 ask cluster client: row x

 print 'The current row is: ';

 print x

 print 'The current row contains: ';

 print cluster client

 reset cluster client

 print 'Now the current row contains: ';

 print cluster client

The current row is: 5

The current row contains: "12-34-56-5","5"

Now the current row contains: "",""

Use the ALL option with RESET CLUSTER to reset the entire cluster array to nulls and zeros.

Example: RESET CLUSTER Statement with ALL Option

 cluster client: ssn$, id$

 for I = 1 to 5

 set cluster client: row i

 client->ssn$ = '12-34-56-' + str$(i)

 client->id$ = str$(i)

 next i

 print 'The original number of cluster rows is: ';

 print size(client)

 reset cluster client: all

 print 'And now the number of cluster rows is: ';

 print size(client)

The number of cluster rows is: 5

And now the number of cluster rows is: 0

 84

Scalar Clusters

Format:

CLUSTER cluster_name: var1[, var2][, var3] … [, var256]

Scalar clusters have no rows. They are typically used to store related information about a single overall

concept. An example overall concept is “meals” with the related information being the types of food

one eats during each meal: protein, liquid, and carbs. This example shows how to create a scalar cluster

and store data into the cluster variables.

Example: Create a Scalar Cluster with Data

 cluster meals: protein$, liquid$, carb$

 meals->protein$ = “eggs”

 meals->liquid$ = “tea”

 meals->carb$ = “toast”

There’s a faster method to create the scalar cluster with constant variables:

 cluster payroll: ssn$, state$ = 'NH'

 print payroll->state$

NH

ENUM Statement

Format:

ENUM cluster_name: str1[, str2][, str3] … [, str256]

The ENUM (enumerated) statement creates a scalar cluster where each member is assigned a sequential

number starting at 1.

Example: ENUM Statement

 enum season: spring, summer, fall, winter

 print season->summer

 print enum season

 enum season9 using season

 print enum season9

 2

1,2,3,4

1,2,3,4

ENUM is useful when making “state machines” and other situations where assigning sequence numbers

to variables is handy.

 85

Embedded Cluster Templates

A “cluster template” is a cluster whose primary use is as a reference and not for data storage itself.

There may be standard variables that you want multiple clusters to contain. For example, the standard

address format which includes address line 1, address line 2, city, state, zip code. This address format

will be used for the client, the user, and the company clusters. A separate cluster for these variables can

be set up as a TEMPLATE that can then be embedded into other clusters. There will be no data stored

in this cluster template. The example below shows the cluster address used as a template by other

clusters.

Example: Embedded Cluster Templates

cluster address: addr1$, addr2$, city$, state$, zip$ // cluster template

cluster client: client_id$, client_name$, cluster address

cluster user: login$, name$, cluster address, age

cluster company: company_name$, cluster address

client->city$ = ‘San Diego’ // data is then stored into the cluster variables as usual:

Cluster templates also can be embedded into other clusters and used as JSON OJBECTS as shown in the

example below.

Example: Embedded Cluster Template JSON Objects Using PREFIX

 cluster name: first$, last$

 cluster multi: ssn$, prefix cluster name, tax, is_okay?

 add cluster multi

 multi->ssn$ = '222-33-4444'

 multi->name->first$ = 'Mister2 "they say"'

 multi->name->last$ = 'Smith2'

 multi->tax = 45.678

 multi->is_okay? = false

 print 'Current row json'

 x$ = json$(multi)

 print x$

 print

 end

Current row json

{

 "multi":

 {

 "ssn":"222-33-4444",

 "name": {

 "first":"Mister2 \"they say\"",

 "last":"Smith2"

 },

 "tax":45.678,

 "is_okay":false

 }

}

 86

To store data into a cluster variable that is part of a JSON object, the cluster name and the cluster

template name must both be specified as shown below.

Example: Store Data in JSON Object Cluster Variable

 multi->name->first$ = 'Mister'

 multi->name->last$ = 'Smith'

Clusters with Adhoc JSON Objects

JSON objects can be created without using embedded cluster templates. When defining the cluster,

specify the name of the object when describing the variable. The example below will create an object

named “address” that describes the address variables to include.

Example: Clusters with Adhoc JSON Objects

cluster student: id$, address->addr1$, address->addr2$, address->city$, address->state$, address->zip$

student->id$ = “John Henry”

student->address->addr1$ = “23 Hummingbird Way”

student->address->addr2$ = “Box 456”

student->address->city$ = “Escondido”

student->address->state$ = “CA”

student->address->zip$ = “92345”

 x$ = json$(student)

 print x$

 print

 end

{

 "student":

 {

 "id":"John Henry",

 "address": {

 "addr1":"23 Hummingbird Way",

 "addr2":"Box 456",

 "city":"Escondido",

 "state":"CA",

 "zip":"92345"

 }

 }

}

 87

Passing Clusters into Routines

Format:

routine_name WITH root_cluster_name cluster_name

Clusters can be passed into routines using either the cluster’s name or the cluster’s root name. In

addition, clusters outside of the routine can be directly referenced from inside of the routine; they are

globally available.

The routine is called by providing the routine name, the root cluster name, followed by the name of the

cluster being passed into the routine.

From inside of the routine, you can both read and write clusters. This provides an easy method to pass

a lot of variables into a routine without having to pass in all the individual variable names.

Example: Passing Clusters into Routines

// define root cluster

 cluster meal: type$, protein$, liquid$, carb$

// define related clusters

 cluster breakfast using meal

 cluster lunch using meal

// add data to clusters

 breakfast->type$ = "Breakfast"

 breakfast->protein$ = "eggs"

 breakfast->liquid$ = "tea"

 breakfast->carb$ = "toast"

 lunch->type$ = "Lunch"

 lunch->protein$ = "chicken"

 lunch->liquid$ = "coffee"

 lunch->carb$ = "rice"

// reference clusters outside of a routine with the root cluster name

 routine show_one_meal with meal

 print cluster meal

 end routine

// call the routine

 show_one_meal with meal breakfast

 show_one_meal with meal lunch

 end

"Breakfast","eggs","tea","toast"

"Lunch","chicken","coffee","rice"

 88

Private Clusters

Just as with private variables, clusters can also be private in a routine. The cluster and its variables

cannot be seen from outside of the routine.

Example: Private Clusters

 program test

 do_work with firstname$ = 'Sally'

 do_work with firstname$ = 'Fred'

 do_work with firstname$ = 'Tom'

 do_work with firstname$ = 'Jane'

 do_work with firstname$ = 'Julie'

 private routine do_work with firstname$

 cluster my_test: b$

 add cluster my_test

 my_test->b$ = firstname$

 print 'Rows: '; size(my_test)

 end routine

 end

Rows: 1

Rows: 2

Rows: 3

Rows: 4

Rows: 5

Note: See Sheerpower and Program Segmentation for more on private routines and variables in

Sheerpower.

http://www.ttinet.com/doc/sp4gl/sheerpower_096.html#prog_seg

 89

New Sheerpower Synonyms

Full List of Synonyms in Sheerpower

_EXTRACTED = _COLLECTED

EXTRACT = COLLECT

EXTRACTED = COLLECTED

REEXTRACT = RECOLLECTED

HEADERS = HEADER

OUTIN = UPDATE

STRUCTURE = TABLE

GO = CONT

LNH = LISTNH

OLD = BUILD

REEXTRACT = RECOLLECTED

RNH = RUNNH

STATS = STATISTICS

FILEINFO$() = FILESPEC$()

STRUCT = CLUSTER

 90

ARS Utilities

ARSCHK -COUNT Option

Format:

Command Line Format:
 ARSCHK filename.ars [-COUNT]

The ARSCHK ARS utility has been enhanced to include a fourth parameter option of -COUNT. This

parameter tells ARSCHK to perform critical validations and output the number of records in the ARS file

being checked. Without -COUNT, all the data buckets are validated which can take a long time on tables

that have millions of records.

Example: ARSCHK -COUNT Option

// command line entry that prints to a logfile

 c:\Sheerpower\Samples>arschk client.ars -count > arschk_log.txt

// command line entry that prints to the command line console

 c:\Sheerpower\Samples>arschk client.ars -count

ARSCHK V10.88

client.ars ARS analysis starting

 Checking Prologues

 # Sector Size = 512

 Prologue Stats: (data bucketsize = 64) (maxrecsize = 400)

 # Prologue Updates: 2 # Record Deletes : 0

 # Prologue Fixes : 0 #Plg Reccnt < Orig: 0

 #Recycle moves : 0 #Extent Seg Delete: 0

 #Extent Bkt Delete: 0

 Original Code version: 7.01 - Current code version 7.01

 Checking ID Block

 Checking RECord UPDate Block

 Checking KEY DEFinition Blocks

 Key Definition #1 Stats: (bucketsize = 12)

 Key Read Access count : 0 Key Bucket Split count: 0

 Empty Buckets Deleted : 0 Fix First Key Deletes : 6

 Duplicate add failures: 0

 Key Definition #2 Stats: (bucketsize = 18)

 Key Read Access count : 0 Key Bucket Split count: 0

 Empty Buckets Deleted : 0 Fix First Key Deletes : 0

Records: 15

ARSCHK finished: SUCCESSFUL Validation of client.ars

c:\Sheerpower\Samples>

 91

ARSRESTORE & ARS2ARS Enhancement

ARSRESTORE and ARS2ARS utilities have been enhanced to write out records that were rejected due to

duplicate keys.

 92

INDEX

$DEBUG ON | $DEBUG OFF, 42

$SHOW ALL, 45

%INCLUDE Directive for Web Scripting, 29

%TEST and %TEST_IGNORE Directives with OPTION TEST ON | OFF, 30

_ELAPSED System Function, 9

_ROUTINE System Function, 9

ABORT Command, 21

ADD CLUSTER Statement, 58

ARSCHK -COUNT Option (ARS Utility), 90, 91

ARSRESTORE & ARS2ARS Enhancement, 91

ASCII() Function – Return ASCII Value of Specified String Character, 10

ASK | SET TABLE: DATA Statement, 31

ASK CLUSTER Statement, 62

ASK SYSTEM: SPVERSION Statement, 22

ASK TABLE: COUNT Statement, 31

ASK TABLE: ENGINE Statement, 34

ASSERT Statement, 22

BETWEEN$() Function, 10

CLUSTER INPUT Statement, 67

CLUSTERS in Sheerpower, 57

Clusters with Adhoc JSON Objects, 86

COLLECT CLUSTER | END COLLECT Statements, 63

Comments in Sheerpower Programs, 48

COPY CLUSTER Statement, 80

Creating Multiple Related Clusters, 57

Creating Sheerpower Clusters, 57

DEBUG SHOW Command, 36

DEBUG STACK Command, 36

DIM/REDIM Statements – Dynamically Expandable Arrays, 23

DUMP OF TABLES Debug Output, 37

DUMP Statement, 37

Embedded Cluster Templates, 85

ENUM Statement, 84

EPS Function, 11

FINDITEM() Function, 11

FINDROW Function, 74

FINDROW() with Synthetic Keys, 76

FOR/NEXT Loop – Virtually Infinite Counter, 23

Full List of Synonyms in Sheerpower, 89

 93

GROUP & META GROUP Variables, 51

INCLUDE, EXCLUDE and SORT BY with COLLECT | END COLLECT Statements, 66

JOIN() Function, 13

JSON$() Function, 78

LIST STATS Command – Output File, 39

LOCAL ROUTINE, 49

LOGICALS, SYMBOLS & GLOBALS: Interprocess Communication Methods, 55

MAXSIZE() Function for Arrays, 13, 78

MODULE | END MODULE Statements, 54

Numeric Constants Support Underscores “_”, 47

OPEN FILE | OPEN TABLE Statement with ACCESS UPDATE Option, 25

OPEN FILE Statement with HEADERS Option, 26

OPEN FILE Statement with SHARED Option, 25

OPEN FILE Statement with VERB Option, 27

Passing Clusters into Routines, 87

PHASH$() Function, 14

POS() Function – Search from End of String, 14

PRINT CLUSTER Statement, 69

PRINT GROUP STATEMENT, 51

Private Clusters, 88

RESET CLUSTER Statement, 83

RESET GROUP Statement, 52

Scalar Clusters, 84

SCOPED ROUTINE with STATIC Variables, 49

SELECT | END SELECT Statement with CASE OF BOOLEAN, 15

SET | CANCEL WATCH Statements, 40

SET CLUSTER Statement, 61

SIZE() Function, 62

SORT in EXTRACT | END EXTRACT LENGTH Option, 34

SORTED() Function with Arrays, 16

START TIMER Statement, 27

Support for Both “!=” and “<>” for “NOT EQUAL TO”, 48

UNIQUE Option with COLLECT | END COLLECT Statements, 65

UUID$ Function, 18

Variable Name Spelling Suggestions, 47

XOR$() Function, 20

